Not logged inAmerican Welding Society Forum
Forum AWS Website Help Search Login
Up Topic Welding Industry / General Welding Discussion / Ti-6242 Solution Anneal
- - By Zeek (**) Date 08-03-2007 14:20
I have some 0.50" titanium plate about 6"x12".  Does anyone know what the correct temp/time/cooling procedures are for a solution anneal heat treat and what the AMS spec is?  I thought I saw somewhere that it was 1650F +/-25 held for 60 minutes and then air cooled, but I'm not sure if that's correct.  Any advice on where to look would be greatly appreciated.  Thanks.
Parent - - By ssbn727 (*****) Date 08-03-2007 16:04
Check this site out Zeek:

http://www.timet.com/Index2_content.html

I'll post more when I've got more info for you. :)

Respectfully,
Henry
Parent - - By ssbn727 (*****) Date 08-03-2007 16:14
Here you go Zeek:

http://www.timet.com/index_new.htm

Now when you open the link, look in Table 5:
When you click the table, another link will open - displaying the table.
Hope this helps. :)

Respectfully,
Henry
Parent - - By Zeek (**) Date 08-14-2007 14:34
Does this mean I have to do an anneal at 1750 and then I also have to do a stabilization heat treatment?
Parent - - By ssbn727 (*****) Date 08-14-2007 20:08 Edited 08-15-2007 00:55
Hi Zeek!

At first glance, I thought you were talking about a forging or bar for that grade - my mistake and I apologize. Go back into the TIMET website and look for the bar that says "products and Applications... Then look for Timetal data sheets 2, then click Timetal 6242... Look first for General fabrication and heat treatments... Then when the table #3 opens up, scroll down to solution treatment which recommends 25 to 50 F (15 to 30 C) below the beta transus Transformation temperature for one hour, then Water Quench for this specific Ti alloy... After all this is an Alpha near Alpha alloy. In it's normal heat treated condition, Ti 6242 actually has a structure better described as Alpha/Beta!!! However in the book, it's considered to be in the Alpha near Alpha category.

What is the Beta Transus temp for this alloy? Unfortunately one has to go through this website from the beginning in order to find that info out so, go back to the beginning and follow the same instructions as stated above to get to the link for Timetal 6242... When you arrive there, look for Physical Properties (Table #2)... Open that link and find the beta Transus for Ti 6242 which would be 1825 F with a tolerance of +25 F (955 C +15 C).

Now comes the fun part because, one has to decide within the tolerances listed - the correct temperature to solution treat the plate! :)

I'll leave that up to you but, one thing is for sure... According to the above mentioned recommendations from TIMET who are the worlds largest commercial Ti manufacturer, I would'nt use 1750F as it falls to low below the beta transus temperature for a proper solution heat treatment.

On the low end I would start @ 1775 F which would be 50F below beta transus however, 1800 seems to be ideal when using both tolerances from tables 2 & 3.

Now a word of caution... If you really mean a stress relief anneal as opposed to a solutionheat treatment, then go back to table #3 and look @ the recommendations listed for that specific heat treatment for this specific Ti alloy. Forgive my grammar :) I hope this will shed some light because I had been driving myself crazy looking for my own RMI Ti handbook and I cannot seem to find it!!! Although I wish I did have the Ti Black book by ASM Intl. also!!! I did a google book search and found it but, would'nt you know it, pages 57 thru 60 where all the pertinent info for the solution treatment of this alloy was NOT available for review - Go FIGURE!!! Hey, that's the way it always is when one does a google book search - it's POT LUCK!!!

So if you do'nt feel 100% confident that the above mentioned info is correct, then you can always call TIMET's World Headquarters in Dallas and talk to one of their technical specialists... Here's their number: (972) 934-5300

Respectfully,
Henry
Parent - - By ssbn727 (*****) Date 08-14-2007 22:56 Edited 08-15-2007 00:57
Hello again Zeek!

Upon further review, I noticed that one can find what one is looking for via the Google book search sometimes by thinking out of the box - so to speak!!! What I mean is, I found what you need to read!!!

Hurry because, as I post this someone no doubt will attempt to void this section from public view so here goes: go to the Google book search... In the search area, type in "Ti 6242"... Once the "Titanium a Technical Guide" book appears, scroll to the right of your screen to the "Table of Contents" and scroll down to "Appendix B, Titanium Alloy Data Sheets"... On the upper right corner of the "Book Viewer" click the right triangle to page 174 where the heat treatment section starts for alloy Ti 6242, and it contiues until page 177... You should be able to find what you need there. But hurry because, it may not be there soon!!! :) :) :) Here's the link in case you ca'nt find it on your own:
http://books.google.com/books?id=HgzukknbNGAC&pg=RA1-PA174&lpg=RA1-PA174&dq=ti+6242&source=web&ots=KY6-ddbEZJ&sig=f-5fTb7LDWtOw0fjifTEBc2DSn4#PPA99,M1

Respectfully,
Henry
Parent - By ssbn727 (*****) Date 08-28-2007 10:59 Edited 08-28-2007 11:52
Hi Zeek!

Here's some more data on heat treating Titanium and it's alloys:

Heat Treating of Titanium and Titanium Alloys

Abstract:
Titanium and Titanium Alloys are heat treated in order to:

    * Reduce residual stresses developed during fabrication (stress relieving)
    * Produce an optimum combination of ductility, machinability, and dimensional and structural stability (annealing)
    * Increase strength (solution treating and aging)
    * Optimize special properties such as fracture toughness, fatigue strength, and high-temperature creep strength

Titanium and titanium alloys are heat treated in order to:

    * Reduce residual stresses developed during fabrication (stress relieving)
    * Produce an optimum combination of ductility, machinability, and dimensional and structural stability (annealing)
    * Increase strength (solution treating and aging)
    * Optimize special properties such as fracture toughness, fatigue strength, and high-temperature creep strength.

Various types of annealing treatments (single, duplex, (beta), and recrystallization annealing, for  example), and solution treating and aging treatments, are imposed to achieve selected mechanical properties. Stress relieving and annealing may be employed to prevent preferential chemical attack in some corrosive environments, to prevent distortion (a stabilization treatment) and to condition the metal for subsequent forming and fabricating operations.

Alloy Types and Response to Heat Treatment
The response of titanium and titanium alloys to heat treatment depends on the composition of the metal and the effects of alloying elements on the α-β crystal transformation of titanium. In addition, not all heat treating cycles are applicable to all titanium alloys, because the various alloys are designed for different purposes.

    * Alloys Ti-5Al-2Sn-2Zr-4Mo-4Cr and Ti-6Al-2Sn-4Zr-6Mo are designed for strength in heavy sections.
    * Alloys Ti- 6Al-2Sn-4Zr-2Mo and Ti-6Al-5Zr-0.5Mo-0.2Si for creep resistance.
    * Alloys Ti-6Al-2Nb-1 Ta-1Mo and Ti-6Al-4V, for resistance to stress corrosion in aqueous salt solutions and for high fracture toughness.
    * Alloys Ti-5Al-2.5Sn and Ti-2.5Cu for weldability; and
    * Ti-6Al-6V-2Sn, Ti-6Al-4V and Ti-10V-2Fe-3Al for high strength at low-to-moderate temperatures.

Effects of Alloying Elements on Alpha & Beta Transformation. Unalloyed titanium is allotropic. Its close-packed hexagonal structure (alpha phase) changes to a body-centered cubic, structure (Beta phase) at 885°C (1625°F), and this structure persists at temperatures up to the melting point.

With respect to their effects on the allotropic transformation, alloying elements in titanium are classified as alpha stabilizers or beta stabilizers. Alpha stabilizers, such as oxygen and aluminum, raise the alpha-to-beta transformation temperature. Nitrogen and carbon are also stabilizers, but these elements usually are not added intentionally in alloy formulation. Beta stabilizers, such as manganese, chromium, iron, molybdenum, vanadium, and niobium, lower the alpha-to-beta transformation temperature and, depending on the amount added, may result in the retention of some beta phase at room temperature.

Alloy Types. Based on the types and amounts of alloying elements they contain, titanium alloys are classified as alpha, near-alpha, alpha-beta, or beta alloys. The response of these alloy types to heat treatment is briefly described below.

Alpha and near-alpha titanium alloys can be stress relieved and annealed, but high strength cannot be developed in these alloys by any type of heat treatment (such as aging after a solution beta treatment and quenching).

The commercial beta alloys are, in reality, metastable beta alloys. When these alloys are exposed to selected elevated temperatures, the retained beta phase decomposes and strengthening occurs. For beta alloys, stress-relieving and aging treatments can be combined, and annealing and solution treating may be identical operations.

Alpha-beta alloys are two-phase alloys and, as the name suggests, comprise both alpha and beta phases at room temperature. These are the most common and the most versatile of the three types of titanium alloys.

Oxygen and iron levels have significant effects on mechanical properties after heat treatment. It should be realized that:

    * Oxygen and iron must be near specified maximums to meet strength levels in certain commercially pure grades
    * Oxygen must be near a specified maximum to meet strength levels in solution treated and aged Ti-6Al-4 V
    * Oxygen levels must be kept as low as possible to optimize fracture toughness. However, the oxygen level must be high enough to meet tensile strength requirements
    * Iron content must be kept as low as possible to optimize creep and stress-rupture properties. Most creep-resistant alloys require iron levels at or below 0.05wt%.

Stress Relieving
Titanium and titanium alloys can be stress relieved without adversely affecting strength or ductility.

Stress-relieving treatments decrease the undesirable residual stresses that result from first, nonuniform hot forging or deformation from cold forming and straightening, second, asymmetric machining of plate or forgings, and, third, welding and cooling of castings. The removal of such stresses helps maintain shape stability and eliminates unfavorable conditions, such as the loss of compressive yield strength commonly known as the Bauschinger effect.

When symmetrical shapes are machined in the annealed condition using moderate cuts and uniform stock removal, stress relieving may not be required. Compressor disks made of Ti-6Al-4V has been machined satisfactorily in this manner, conforming with dimensional requirements. In contrast, thin rings made of the same alloy could be machined at a higher production rate to more stringent dimensions by stress relieving 2 h at 540°C (1000°F) between, rough and final machining. Separate stress relieving may be omitted when the manufacturing sequence can be adjusted to use annealing or hardening as the stress-relieving process. For example, forging stresses may be relieved by annealing prior to machining.

Annealing
The annealing of titanium and titanium alloys serves primarily to increase fracture toughness, ductility at room temperature, dimensional and thermal stability, and creep resistance. Many titanium alloys are placed in service in the annealed state. Because improvement in one or more properties is generally obtained at the expense of some other property, the annealing cycle should be selected according to the objective of the treatment.

Common annealing treatments are:

    * Mill annealing
    * Duplex annealing
    * Recrystallization annealing
    * Beta annealing

Mill annealing is a general-purpose treatment given to all mill products. It is not a full anneal and may leave traces of cold or warm working in the microstructures of heavily worked products, particularly sheet.

Duplex annealing alters the shapes, sizes, and distributions of phases to those required for improved creep resistance or fracture toughness. In the duplex anneal of the Corona 5 alloy, for example, the first anneal is near the beta transus to globularize the deformed alpha and to minimize its volume fraction. This is followed by a second, lower-temperature anneal to precipitate new lenticular (acicular) alpha between the globular alpha particles. This formation of acicular alpha is associated with improvements in creep strength and fracture toughness.

Recrystallization annealing and beta annealing are used to improve fracture toughness. In recrystallization annealing, the alloy is heated into the upper end of the alpha-beta range, held for a time, and then cooled very slowly. In recent years, recrystallization annealing has replaced beta annealing for fracture critical airframe components.

b (Beta) Annealing. Like recrystallization annealing, b annealing improves fracture toughness. Beta annealing is done at temperatures above the beta transus of the alloy being annealed. To prevent excessive grain growth, the temperature for beta annealing should be only slightly higher than the beta transus. Annealing times are dependent on section thickness and should be sufficient for complete transformation. Time at temperature after transformation should be held to a minimum to control b grain growth. Larger sections should be fan cooled or water quenched to prevent the formation of a phase at the b grain boundaries.

Straightening, sizing, and flattening of titanium alloys are often necessary in order to meet dimensional requirements. The straightening of bar to close tolerances and the flattening of sheet present major problems for titanium producers and fabricators.

Unlike aluminum alloys, titanium alloys are not easily straightened when cold because the high yield strength and modulus of elasticity of these alloys result in significant springback. Therefore, titanium alloys are straightened primarily by creep straightening and/or hot straightening (hand or die), with the former being considerably more prevalent than the latter.

Straightening, sizing, and flattening may be combined with annealing by the use of appropriate fixtures. The parts, in bulk or in fixtures, may be charged directly into a furnace operating at the annealing temperature. At annealing temperatures many titanium alloys have a creep resistance low enough to permit straightening during annealing.

Creep straightening may be readily accomplished during the annealing and/or aging processes of most titanium alloys. However, if the annealing/aging temperature is below about 540 to 650°C (1000 to 1200°F), depending on the alloy, the times required to accomplish the desired creep straightening can be extended. Creep straightening is accomplished with rudimentary or sophisticated fixtures and loading systems, depending on part complexity and the degree of straightening required.

Creep flattening consists of heating titanium sheet between two clean, flat sheets of steel in a furnace containing an oxidizing or inert atmosphere. Vacuum creep flattening is used to produce stress-free flat plate for subsequent machining. The plate is placed on a large, flat ceramic bed that has integral electric heating elements. Insulation is placed on top of the plate, and a plastic sheet is sealed to the frame.

Stability. In alpha-beta titanium alloys, thermal stability is a function of b-phase transformations. During cooling from the annealing temperature, beta may transform and, under certain conditions and in beta alloys, may form a brittle intermediate phase known as w.

A stabilization annealing treatment is designed to produce a stable beta phase capable of resisting further transformation when exposed to elevated temperatures in service. Alpha-beta alloys that are lean in beta, such as Ti-6Al-4V, can be air cooled from the annealing temperature without impairing their stability. To obtain maximum creep resistance and stability in the near-alpha alloys Ti-8Al-1 Mo-1 V and Ti-6Al-2Sn-4Zr-2Mo, a duplex annealing treatment is employed. This treatment begins with solution annealing at a temperature high in the alpha-beta range, usually 25 to 55°C (50 to 100°F) below the beta transus for Ti-8Al-1Mo-1Vand 15 to 25°C (25 to 50°F) below the alpha-beta transus for Ti-6Al-2Sn-4Zr-2Mo.

Solution Treating and Aging
A wide range of strength levels can be obtained in alpha-beta or beta alloys by solution treating and aging. With the exception of the unique Ti-2.5Cu alloy (which relies on strengthening from the classic age-hardening reaction of Ti2Cu precipitation similar to the formation of Guinier-Preston zones in aluminum alloys), the origin of heat-treating responses of titanium alloys lies in the instability of the high-temperature beta phase at lower temperatures.

Heating an alpha-beta alloy to the solution-treating temperature produces a higher ratio of beta phase. This partitioning of phases is maintained by quenching; on subsequent aging, decomposition of the unstable beta phase occurs, providing high strength. Commercial beta alloys generally supplied in the solution-treated condition, and need only to be aged.

After being cleaned, titanium components should be loaded into fixtures or racks that will permit free access to the heating and quenching media. Thick and thin components of the same alloy may be solution treated together, but the time at temperature is determined by the thickest section. Time/temperature combinations for solution treating are given in Table 1. A load may be charged directly into a furnace operating at the solution-treating temperature. Although preheating is not essential, it may be used to minimize the distortion of complex parts.

Table 1. Recommended solution and aging treatments for titanium alloy

Alloy                                             Solution   Solution   Cooling      Aging      Aging
Alpha or near-Alpha alloys                 temp[°C]  time[h]   medium     temp[°C] time[h]  

Ti-8Al-1Mo-1V                                980-1010     1      Oil or water  565-595          -
Ti-2.5Cu (IMI 230)                           795-815    0,5-1   Air or water 390-410   8-24
                                                                                                  (step 1)                                                                                                                                                                                                                                                                                     
                                                                                  (Step2)  465-485   8    

Ti-6Al-2Sn-4Zr-2Mo                         955-980      1       Air             595          8
Ti-6Al-5Zr-0.5Mo-0.2Si                     1040-1060  0,5-1  Oil             540-560    24
(IMI 685)
Ti-5.5Al-3.5Sn-3Zr-1Nb-0.3Mo-0.3Si   1040-1060  0,5-1  Air or oil     615-635    2
(IMI 829)
Ti-5.8Al-4Sn-3.5Zr-0.7Nb-0.5Mo-0.3Si 1020          2       Oil            625           2
(IMI834)

Alpha-Beta Alloys
Ti-6Al-4V                                        955-970     1      Water        480-595   4-8
                                                    955-970      1      Water        705-760   2-4

Ti-6al-6V-2Sn (Cu+Fe)                     885-910      1      Water        480-595   4-8
Ti-6Al-2Sn-4Zr-6Mo                         845-890      1       Air            580-605   4-8
Ti-4Al-4Mo-2Sn-0.5Si (IMI 550)          890-910     0.5-1  Air            490-510   24
Ti-4Al-4Mo-4Sn-0.5Si (IMI 551)          890-910     0.5-1  Air            490-510   24
Ti-5Al-2Sn-2Zr-4Mo-4Cr                    845-870     1        Air           580-605  4-8
Ti-6Al-2Sn-2Zr-2Mo-2Cr-0.25Si          870-925      1       Water       480-595  4-8

Beta or near-Beta alloys
Ti-13V-11Cr-3Al                               775-800  1/4-1 Air or water   425-480  4-100
Ti-11.5Mo-6Zr-4.5Sn (Beta III)           690-790  1/8-1 Air or water   480-595  8-32
Ti-3Al-8V-6Cr-4Mo-4Zr (Beta C)          815-925     1   Water           455-540  8-24
Ti-10V-2Fe-3Al                                 760-780     1   Water           495-525  8
Ti-15V-3Al-3Cr-3Sn                           790-815  1/4   Air                510-595  8-24

Solution treating of titanium alloys generally involves heating to temperatures either slightly above or slightly below the beta transus temperature. The solution-treating temperature selected depends on the alloy type and practical considerations briefly described below.

b (Beta) alloys are normally obtained from producers in the solution-treated condition. If reheating is required, soak times should be only as long as necessary to obtain complete solutioning. Solution-treating temperatures for beta alloys are above the beta transus; because no second phase is present, grain growth can proceed rapidly.

a-b (Alpha-beta) alloys. Selection of a solution-treatment temperature for alpha-beta alloys is based on the combination of mechanical properties desired after aging. A change in the solution-treating temperature of alpha-beta alloys alters the amounts of beta phase and consequently changes the response to aging.

To obtain high strength with adequate ductility, it is necessary to solution treat at a temperature high in the alpha-beta field, normally 25 to 85°C (50 to 150°F) below the beta transus of the alloy. If high fracture toughness or improved resistance to stress corrosion is required, beta annealing or beta solution treating may be desirable. However, heat treating alpha-beta alloys in the beta range causes a significant loss in ductility. These alloys are usually solution heat treated below the beta transus to obtain an optimum balance of ductility, fracture toughness, creep, and stress rupture properties.

This is from "Key to Metals:
http://www.key-to-nonferrous.com/default.aspx?ID=CheckArticle&NM=97
Hope this helps ;)

Respectfully,
Henry
Up Topic Welding Industry / General Welding Discussion / Ti-6242 Solution Anneal

Powered by mwForum 2.29.2 © 1999-2013 Markus Wichitill