Formula for the Estimation of Duty Cycle other than rated outputs*:

\[T_a = \left(\frac{I}{I_a} \right)^2 \times T \]

- \(T_a \) = Required Duty Cycle [%]
- \(I \) = Rated Current at the required Duty Cycle [A]
- \(I_a \) = Maximum Current at the required Duty Cycle [A]
- \(T \) = Rated Duty Cycle [%]

Example*:

200 Ampere Power Source rated at 60% Duty Cycle and operated at 250 Ampere (as far as permitted):

\[T_a = \left(\frac{200}{250} \right)^2 \times 60 = (0.8)^2 \times 0.6 = 38\% \]

This means that the power source has to be operated maximum 3.8 minutes with a current of 250 Ampere (according to the 10 minute cycle).

Formula for the Estimation others than rated output currents at a specified Duty Cycle*:

\[I_a = I \times \left(\frac{T}{T_a} \right)^{1/2} \]

- \(I_a \) = Maximum Current at the required Duty Cycle [A]
- \(I \) = Rated Current at the required Duty Cycle [A]
- \(T \) = Rated Duty Cycle [%]
- \(T_a \) = Required Duty Cycle [%]

Example*:

The maximum output current at a duty cycle of 100% (according to 10 minutes duty cycle) can be calculated by:

\[I_a = 200 \times \left(\frac{60}{100} \right)^{1/2} = 200 \times 0.775 = 155A \]

** Very recommendable