Investigation of Alloy 600 Welding Parameters

Results of experimental study followed by a heat model analysis provide the bases for conclusions, hypotheses and further study

BY S. S. GLICKSTEIN, E. FRIEDMAN AND W. YENISCAYICH

ABSTRACT. A series of bead-on-plate welds have been made with Alloy 600, varying the current, arc gap, torch speed, shielding gas, and electrode configuration. The width, depth, and area of the melt zone were then correlated to these parameter variations. In addition, the temperature at selected points on the weld plate was measured as a function of time and compared to calculations using a finite element heat conduction computer program.

Introduction

As part of an effort to describe the effects of welding variables on Alloy 600, bead-on-plate welds were performed and the melt zone analyzed. While similar studies of this type have been reported in the past, none have dealt systematically with Alloy 600. The welding variables considered in this program included weld current, arc gap spacing, welding speed, shielding gas, and electrode configuration.

To assess the capabilities of a finite element thermal analysis of the welding process, Chromel-alumel thermocouples were attached to various points on the weld plates to record temperature changes that occurred during and after the heat was applied. The numerical analysis can be a valuable and relatively inexpensive tool for performing parametric studies of the effects on the transient thermal cycle of various weldment characteristics; e.g., weld speed, magnitude and distribution of the heat source, weld joint geometry and heat sink contributions of adjacent fixturing or structure. An accurate determination of the temperature transients is required for further numerical studies of residual stresses and distortions developed as a result of welding. The results of the temperature-time relationship of the welded plates has helped to demonstrate the usefulness as well as the deficiencies of this analytical description of the welding process.

Experiment

Welds were made automatically using a gas tungsten-arc welding torch attached to a side beam welding fixture. The material described in Table 1 consisted of 2 X 2 X 1/4 in. Alloy 600 coupons machined from 0.300 in. thick hot rolled plate. The plates were held in place by four set screws as shown in Fig. 1a in order to eliminate the external heat sink that a clamping mechanism would have introduced.

The electrodes used throughout this study were precision ground 3/32 in. diam., 2% thoriated tungsten and had a tip with a 28 ± 4 deg included angle and a 0.018 ± 0.003 in. flat tip, except when tip variations were intentionally made. A number 6 gas cup was used with an argon gas flow rate of 15 cfm. The electrode extended beyond the cup 3/16 in.

Chromel-alumel thermocouples were spot welded to various points on the top and bottom surface of the plate as shown in Fig. 1b and the signals recorded with a four channel chart recorder.

Weld current and voltage were simultaneously recorded during welding on a Honeywell chart recorder. Since the IR drop in the line cable and electrode was included in the voltage measurement, an additional test was run to estimate this voltage drop. After the arc was initiated, the voltage V_b, between the electrode and the baseplate was measured for various.

The authors are associated with the Bettis Atomic Power Laboratory operated for the U.S. Atomic Energy Commission by Westinghouse Electric Corporation, Pittsburgh, Pennsylvania.

Paper to be presented at the 56th AWS Annual Meeting, Cleveland, Ohio, April 21-25, 1975.
Table 1 — Chemical Analysis of Alloy 600 (Heat LC 51880) Wt. %

<table>
<thead>
<tr>
<th></th>
<th>Ni</th>
<th>Cr</th>
<th>Fe</th>
<th>Mn</th>
<th>C</th>
<th>Cu</th>
<th>Si</th>
<th>Co</th>
<th>S</th>
<th>P</th>
<th>Al</th>
<th>Ti</th>
<th>B</th>
<th>Mg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>76.14</td>
<td>15.27</td>
<td>7.56</td>
<td>0.34</td>
<td>0.026</td>
<td>0.04</td>
<td>0.20</td>
<td>0.08</td>
<td>0.005</td>
<td>0.16</td>
<td>0.26</td>
<td>0.005</td>
<td><0.01</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2 — Voltage drop in line cable V_L ($V_m - V_e$) and electrode V_e, as a function of welding current

Fig. 4 — Recorded Voltage of stationary arc welds with increasing arc gap. Arc duration = 10 s

Fig. 5 — Cross sections of moving arc welds on 2 x 2 x ¼ in. Alloy 600 plate. Travel speed, 5 ipm. X10, reduced 43%
between measurements at the completion of the weld. Thus, the absolute numbers presented in this report must be examined with care, but the trends observed from run to run are significant and reveal a number of interesting observations which will be discussed in the following sections.

Results
Stationary Arc

The initial set of experiments consisted of a stationary arc held in position for 10 seconds. A summary of the resultant width, depth, area, voltage and peak temperatures obtained for the various weld conditions are given in Table 2. Typical cross section configurations of the welds are shown in Fig. 3. An interesting feature of the weld cross section is the humped configuration that was obtained at the bottom of the pool for the stationary arc weld. Such a configuration was not expected from an normally distributed heat source incident on a plate. The effects of surface tension, arc jet forces, or the Lorentz force due to the current in the weld pool may each help to explain such a phenomenon. Ishizaki (Ref. 2) had observed a similar effect, and has particularly emphasized the importance of interfacial tension of the molten metal in producing a distorted weld puddle configuration. His explanation for the phenomenon is attributed to the motion of the weld pool induced by differences in the surface tension in the molten puddle. Ishizaki's studies showing the various penetration patterns that were obtained for paraffin and stearic acid heated by a point heat source such as a soldering iron, are similar to the results obtained with Alloy 600.

The area, width, and depth of the weld puddle were strongly dependent on the current. These parameters were essentially invariant with changes in arc gap at currents below 100 A, but at higher currents there was a significant decrease in the depth of penetration as the arc gap increased. The arc voltage increased approximately 0.25 volts per 0.010 in. increase in arc gap, as shown in Fig. 4. Thus, while the nominal arc power, typically quoted as $V \times I$ increased with arc gap spacing, the total heat input to the material, measured by the area of the melt zone and the temperature of the plate at T-2 and T-3, remained approximately constant or showed a decrease at high current. The temperature increase on the top surface of the plate at T-1 with increasing arc gap, as shown in Table 2, is attributed to a widening of the heat source incident on the surface of the weld plate.

Moving Arc

The results of the moving arc experiments are shown in Tables 3 and 4, and typical cross sections of the welds are shown in Fig. 5. From the tables it is noted that increasing the speed from 5 ipm to 10 ipm reduces the effective input heat which
The effects of the other welding parameters on the weld puddle discussed in the following paragraph were similar for both the 5 ipm and 10 ipm welding speeds considered. As in the stationary arc there is a strong dependence of the melt zone geometry on current. But for the moving arc at low current, the width, depth, and area of the weld puddle decreased as the arc gap increased, contrary to an invariant effect observed with the stationary arc at low current. Only at the higher currents did the puddle geometry become insensitive to the gap spacing. It is interesting to note that where the puddle geometry was relatively invariant to the arc gap spacing for the stationary and moving arc, the total heat input as measured by the thermocouples and melt area, was approximately the same.

The measured change in voltage with change in arc length is +0.15 to +0.20 V per 0.010 in. increase in arc length. While increasing the arc gap increased the nominal input power (V x I), as with the stationary arc, the input heat remained approximately constant.

The humped puddle configuration previously noted with the stationary arc weld is no longer present with the moving arc. It is assumed that the additional force in the pool due to the moving arc changes the pool motion, causing the puddle to solidify with the more normal contour appearance.

Shielding Gas

To demonstrate the importance of shielding gas, stationary welds were made using Argon, A-5% N₂ and He-24% A-0.33% O₂. The argon was chosen because of its standard use in welding; the A-N₂ to study the effects of a dissociating molecule in the arc discharge which has been mentioned as a means of improving weld penetration (Ref. 3); and the He-A-O₂ because it has also been mentioned as a means of increasing penetration. The results are quite dramatic as revealed in Table 5 and Fig. 6. The weld is extremely sensitive to the shielding gas which causes significant changes in heat input to the weld region.

Although the dissociation energy of nitrogen is only 7.9 eV, much of the energy in the arc is given to dissociating the N₂ molecule. This in turn requires a higher arc voltage to sustain the argon discharge and is evident in the results shown in Fig. 7. The energy absorbed from the arc by the nitrogen molecule is released when the molecules are reformed. If this recombination occurs at the surface of the weld metal, additional heat is given to the weld pool. This type of indirect heating from molecular dissociation, accounts for the major fraction of the heat input in the atomic hydrogen welding process. In this process, molecular hydrogen is dissociated as it is passed through an electric arc drawn between two tung-
When the plate to be welded is placed in the path of the atomic hydrogen coming through the arc, it cools the gas sufficiently to cause immediate recombination at the surface. The energy released due to the recombination, serves as the heat source for welding. Such an effect may account for the apparent increased heat input that is present in welding with the A-5% N₂ gas mixture.

The He-24% A-0.33% O₂ shielding gas shows even greater heat input and penetration than the A-5% N₂ weld. Because of the higher ionization potential of helium compared to argon (24.5 eV vs. 15.7 eV), the arc voltage necessary to sustain the He discharge is much higher than that of argon or the argon-nitrogen mixture for the same weld current. In addition, the dissociation of oxygen may produce effects similar to that for nitrogen, since it too is expected to be entirely dissociated. The dissociation energy of oxygen is only 5.09 eV.

Electrode Configuration

Stationary and moving arc welds were made with a series of electrodes with an included angle varying between 15 and 180 deg. Each of the electrodes had a 0.005 in. flat tip. To study the effect of the "flatness," variations in the size of the flat were made for the 30 deg electrode. Photographs of the arc between a 3/32 in. thoriated tungsten electrode and a copper plate were taken with a polaroid camera using Type 58 film, and a No. 25 filter. The pictures shown in Fig. 8 reveal significant differences in the shape of the arc plasma. From observing the shape of the plasma it is not surprising to expect the changes in bead shape with variations in electrode geometry. The results of changes in the angle of the electrode tip are shown in Table 6, Table 7 and Fig. 9. These data indicate that the maximum area melted and maximum voltage occurred for the 30 and 45 deg electrode configuration. The depth-to-width ratio also indicated a maximum for these shaped electrodes. Erokhin (Ref. 4) has observed similar effects of a peak in the voltage and maximum penetration in his study of the influence of the tungsten cathode geometry on weld penetration. He explains his results by noting that the increased penetration with a sharpening of the electrode tip is accompanied by an increase in the arc jet pressure and the current density which he also measured on the anode surface. The reduction in penetration and arc pressure for the smaller angles (15 deg) is explained on the grounds that the highly concentrated incident energy at the anode, presumably causes the anode material to evaporate rapidly and build up a powerful anode plume. This lowers the direct arc pressure on the anode which results in less penetration.

Chihoski (Ref. 5) has reported on the effects of electrode shape on the arc while welding with aluminum. It is difficult to make comparisons with his work because in his study the voltage was kept constant. The increased arc pressure resulting from the more sharply pointed electrode is indicated (Ref. 5) to depress the molten puddle which would tend to increase the effective arc gap. In order to keep a constant voltage the electrode is thus allowed to extend below the work surface.

Table 5 — Results of 10 Second Duration Stationary Arc Welds for Different Shielding Gases, Current = 91 A

<table>
<thead>
<tr>
<th>Arc gap mils</th>
<th>Width, in.</th>
<th>Depth, in.</th>
<th>Width/depth</th>
<th>Area x 100, sq.in.</th>
<th>Voltage, V</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0.234</td>
<td>0.048</td>
<td>4.87</td>
<td>0.69</td>
<td>8.5</td>
</tr>
<tr>
<td>60</td>
<td>0.234</td>
<td>0.038</td>
<td>6.16</td>
<td>0.67</td>
<td>9.5</td>
</tr>
<tr>
<td>90</td>
<td>0.222</td>
<td>0.036</td>
<td>6.19</td>
<td>0.68</td>
<td>9.5</td>
</tr>
</tbody>
</table>

Fig. 8 — Effect of electrode angle on arc configuration in an argon discharge. I = 100 A, Arc gap = 0.080 in.

Fig. 9 — Effects of electrode tip configuration on voltage and area of weld bead with variation of tip angle. I = 90 A, Arc gap = 0.035 in.

To explain the contradictory results of Savage et al (Ref. 6), which showed the trend of decreasing penetration with the reduction in tip angle, Spiller and MacGregor (Ref. 7) recently discussed the significant effect plate thickness has on such a
study. Their tests confirmed the Savage data where penetration is slight (under 30%), but indicated a reverse trend when thin plates were used and substantial penetration was obtained (above 70%). While Erokhin did not indicate the plate thickness he used in his study, the plates used in this study were ¼ in. thick and penetration less than 30%. The results of our work are in contradiction to the Savage study, and thus additional explanations and further effort are needed to explain these phenomena. Possibly, the difference in material studied may partially help to explain this anomaly.

The effect of electrode tip flatness on melt area and voltage is shown in Fig. 10. Although the width/depth ratio is essentially invariant to the flatness of the tip, the melt area decreases linearly as the tip flatness is increased, indicating a decrease in heat transfer efficiency with blunt tips. In Erokhin's studies a decrease in weld penetration was also found as the bluntness of the tip increased. This was attributed to the accompanying decrease in the measured arc pressure.

An often observed phenomenon is the umbrella-like halo that appears part way up the electrode and is separated from the main discharge as shown in Fig. 11a. These umbrella regions are occasionally accompanied by the growth of crystals or plates on the surface of the electrode. Chemical analyses of these particular crystals have shown them to be high in magnesium. A photograph of such a crystal is shown in

<table>
<thead>
<tr>
<th>Included angle, deg (a)</th>
<th>Voltage, V</th>
<th>Width, in.</th>
<th>Depth, in.</th>
<th>Area x 100, sq. in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>7.4</td>
<td>0.216</td>
<td>0.030</td>
<td>0.70</td>
</tr>
<tr>
<td>90</td>
<td>7.9</td>
<td>0.210</td>
<td>0.028</td>
<td>0.67</td>
</tr>
<tr>
<td>60</td>
<td>8.7</td>
<td>0.252</td>
<td>0.032</td>
<td>0.89</td>
</tr>
<tr>
<td>45</td>
<td>8.9</td>
<td>0.270</td>
<td>0.044</td>
<td>1.03</td>
</tr>
<tr>
<td>30</td>
<td>9.0</td>
<td>0.266</td>
<td>0.042</td>
<td>1.00</td>
</tr>
<tr>
<td>15</td>
<td>8.5</td>
<td>0.254</td>
<td>0.032</td>
<td>0.91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tip Flatness in. (b)</th>
<th>Voltage, V</th>
<th>Width, in.</th>
<th>Depth, in.</th>
<th>Area x 100, sq. in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>9.0</td>
<td>2.66</td>
<td>0.42</td>
<td>1.00</td>
</tr>
<tr>
<td>0.010</td>
<td>8.8</td>
<td>2.50</td>
<td>0.35</td>
<td>0.82</td>
</tr>
<tr>
<td>0.020</td>
<td>8.4</td>
<td>2.48</td>
<td>0.36</td>
<td>0.87</td>
</tr>
<tr>
<td>0.035</td>
<td>8.1</td>
<td>2.24</td>
<td>0.31</td>
<td>0.72</td>
</tr>
<tr>
<td>0.050</td>
<td>7.9</td>
<td>2.08</td>
<td>0.28</td>
<td>0.63</td>
</tr>
<tr>
<td>0.075</td>
<td>7.9</td>
<td>1.80</td>
<td>0.26</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Table 6 — Effects of Electrode Configuration on Weld bead Geometry and Arc Voltage for a Stationary Arc Weld. Dwell Time = 10 Seconds

(a) 2% thoriated tungsten electrodes, 0.093 in. diam were used. Each of the electrodes had a 0.005 in. flat tip (except the 180 deg electrode).

(b) The electrode used in this part of the study had a 30 deg included angle.

<table>
<thead>
<tr>
<th>Included angle, deg (a)</th>
<th>Voltage, V</th>
<th>Width, in.</th>
<th>Depth, in.</th>
<th>Area x 100, sq. in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>7.8</td>
<td>0.170</td>
<td>0.030</td>
<td>0.46</td>
</tr>
<tr>
<td>90</td>
<td>8.1</td>
<td>0.170</td>
<td>0.035</td>
<td>0.51</td>
</tr>
<tr>
<td>60</td>
<td>8.8</td>
<td>0.195</td>
<td>0.038</td>
<td>0.62</td>
</tr>
<tr>
<td>45</td>
<td>9.0</td>
<td>0.198</td>
<td>0.040</td>
<td>0.63</td>
</tr>
<tr>
<td>30</td>
<td>9.25</td>
<td>0.210</td>
<td>0.043</td>
<td>0.70</td>
</tr>
<tr>
<td>15</td>
<td>9.0</td>
<td>0.185</td>
<td>0.036</td>
<td>0.53</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tip Flatness in. (b)</th>
<th>Voltage, V</th>
<th>Width, in.</th>
<th>Depth, in.</th>
<th>Area x 100, sq. in.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>9.25</td>
<td>0.210</td>
<td>0.043</td>
<td>0.70</td>
</tr>
<tr>
<td>0.010</td>
<td>8.7</td>
<td>0.206</td>
<td>0.042</td>
<td>0.68</td>
</tr>
<tr>
<td>0.020</td>
<td>9.0</td>
<td>0.200</td>
<td>0.044</td>
<td>0.68</td>
</tr>
<tr>
<td>0.035</td>
<td>8.1</td>
<td>0.176</td>
<td>0.040</td>
<td>0.51</td>
</tr>
<tr>
<td>0.050</td>
<td>7.7</td>
<td>0.172</td>
<td>0.037</td>
<td>0.48</td>
</tr>
<tr>
<td>0.075</td>
<td>7.5</td>
<td>0.160</td>
<td>0.034</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Table 7 — Effect of Electrode Configuration on Weld bead Geometry and Arc Voltage for a Moving Arc, 5 ipm

(a) 2% thoriated tungsten electrodes, 0.093 in. diam were used. Each of the electrodes had a 0.005 in. flat tip (except the 180 deg electrode).

(b) The electrode used in this part of the study had a 30 deg included angle.

Fig. 10 — Effect of electrode tip configuration on voltage and area of weld bead with variation of tip flatness I = 90 A, arc gap = 0.035 in.

Fig. 11 — (a) Halo-effect occasionally observed accompanied by (b) growth of crystals or plates on the surface of the electrode

118-s | APRIL 1975
and 14 were computed using the finite element method of analysis, a complete description of which may be found, for example, in Zienkiewicz (Ref. 8). The application of this method to the solution of transient heat conduction problems is outlined by Zienkiewicz and Parekh (Ref. 9) and Wilson and Nickell (Ref. 10), among others. The program used to calculate the welding temperatures is featured by the use of the two-dimensional (planar or axisymmetric), bi-quadratic, isoparametric finite element (Ref. 9) and the modified Crank-Nicholson time integration scheme (Ref. 10). Liquid-solid phase change and the associated latent heat are included in the finite element thermal model by means of a recently-developed direct iteration procedure (Ref. 11), which is particularly applicable to alloy systems, in which melting and freezing occur over a range of temperatures.

Thermal analysis of the stationary arc welds was carried out by idealizing the plate to be circular. The thermal energy input from the arc is applied as a distributed heat flux at the center of the plate, and heat is assumed to be conducted axisymmetrically about the center (i.e., temperature varies only radially and through the thickness). For the time period of interest, this assumption is valid when computing temperature at the thermocouple locations (see Fig. 1b).

For the case of the moving arc welds, the determination of the transient three-dimensional temperature distribution is based on the attainment of quasistationary conditions, which result when (a) the heat source is moving at constant speed on a regular — in this case, straight — path, and (b) end effects resulting from initiation or termination of the heat source are neglected. The thermocouple locations are such that these conditions are met. The temperature distribution is then stationary with respect to a moving coordinate system whose origin always coincides with the center of the heat source. Thus, given the transient temperature distribution at any one section of the weldment normal to the direction of welding, the temperature at any other section, other than near the ends, can easily be determined. The problem therefore reduces itself to finding the two-dimensional unsteady temperature field at a section normal to the weld line. A planar analysis may be used for this purpose if the weld speed, relative to a characteristic thermal diffusion rate for the material, is sufficiently high that heat conducted ahead of the electrode is small. The weld speeds of 5 and 10 ipm used in the moving arc welds considered here meet this criterion.

A number of assumptions have been made in the calculations and it is important that these be emphasized.

1. The heat input distribution given in Fig. 15 is an estimate based on photographs of the arc and earlier published literature (Ref. 12). The half-width may be significantly different.

2. Conductivity above 1600 °F was extrapolated to the melting temperature at 2400 °F from measurements below this value. Above 2400 °F the conductivity was assumed constant (Fig. 15). There is no experimental data above 1600 °F for Alloy 600 (Ref. 13).

3. Heat transfer due to the motion of the molten pool was not considered, nor was any change in the shape of the surface of the pool considered. Furthermore, heat losses at
the boundary were assumed due to convection.

Analytical Results and Comparison With Experimental Data

Stationary Arc

Two stationary arc calculations with an assumed total heat input of 56 Btu/min and 28 Btu/min (1000 watts and 500 watts) respectively were performed, and the results compared to some experimental measurements in Fig. 12. As observed in this figure, the analysis predicts the general shape of the thermal cycle. The magnitude of the input heat used in the calculations was adjusted to agree with the peak temperature at thermocouple position T-2 for the two experimental cases shown. With such a heat input, the calculated temperatures during the cooling portion of the thermal cycle are lower than measured. They could have been adjusted to overlap the measured result by recalculating with a slightly modified heat input, but this would result in over-predicting the measured peak temperatures in the plate. Other input data such as boundary condition assumptions or heat transfer parameters must also be considered as a possible means of correcting for this ambiguity.

An interesting result that can be obtained from the analytical model is the effect of a changing heat input on the plate temperature, for example, at position T-2. From Fig. 12, it is observed that the temperature during the cool down period increased only 60-70% as the input heat is doubled. This is attributed to the depth of the weld puddle relative to the thickness of the plate. As the depth of the puddle is increased a greater fraction of the input heat begins to be conducted radially than through the thickness, resulting in the lower than expected temperature.

Moving Arc

Two moving arc calculations with an assumed heat input of 56 Btu/min and 28 Btu/min were performed for each of two weld speeds, 5 ipm and 10 ipm, respectively. The calculation, together with the experimental results are shown in Figs. 13 and 14. As observed in these figures the calculational shape of the thermal cycle is in poor agreement with the measured temperature during the initial rise and fall of the thermal cycle (t <30 seconds). Adjusting the input heat in the calculation to achieve agreement with the peak temperature at position T-2 does achieve reasonable agreement with the temperature for longer times. As in the stationary arc cases, adjusting the boundary conditions and material parameters is necessary to improve the correlation between measurement and calculation.

From Figs. 13 and 14, it is again concluded, as was with the stationary arc, that doubling the heat input (per linear inch) only increases the temperature at T-2 by approximately 70%. This is observed either by increasing the rate of heat input at a fixed welding speed or by decreasing the welding speed keeping the input heat constant.

In Fig. 16, the peak temperature of the measured points T1, T2, and T3 was observed as linearly proportional to the input current. It was thought that the effects of a changing arc configuration (heat input distribution) with increased current would reveal a nonlinear relationship at these measured points. Except for point T-1, the thermocouples were sufficiently far from the source and the uncertainty larger than expected, to reveal any significant changes in heat distribution when the current was increased.

This was verified by comparing calculations with equal heat inputs, but with different spacial distributions. Typical results are shown in Fig. 17. While the resultant melt configuration was significantly different, the peak temperature differences measured at the thermocouple positions were within the experimental uncertainty of ±100 F. (Note, in this parameter change, the heat conduction was assumed constant.) Thus, an attempt to determine changes in weld bead shape with the use of thermocouples was not a very sensitive probe for this
thick plate condition. Improved experimental techniques in addition to employing more thermocouples would justify further effort.

A significant effect was found when comparing the peak temperature at position T-1 with varying arc gap as shown in Fig. 18. From these results it is concluded that the input heat distribution has widened as the arc gap increased. The change in the input heat distribution was insufficient to cause any observable change at the other thermocouple positions.

The most critical assumption made throughout this analysis is the neglect of the weld pool distortion and circulation. It is believed that the heat transfer through the weld pool is mainly due to circulation of metal within the pool (Ref. 14). Two mechanisms have been proposed which can give rise to this circulation: differences in interfacial surface tension (Ref. 2), and magnetodynamic forces (Ref. 15). It is probable that both play an active part in changing the heat transfer characteristics of the liquid metal, but to what extent is presently uncertain. It is thus not expected that the analytical weld pool size and shape will agree with experimentally determined pool contour. Until this heat transfer mechanism is further explored and better understood, one will have to resort to a trial and error technique to adjust the effective thermal conductivity of the molten pool such that the results agree with experiment. This is not to be regarded as haphazard if such a scheme is able to predict a reasonable weld puddle size for various heat input conditions. This approach remains to be explored.

Conclusions

The data presented in this report describe a systematic study of the effects of weld parameters such as current, arc gap, torch speed, shielding gas and electrode shape on the weld bead geometry. The material studied was Alloy 600, in a thick plate configuration. Changes in the material, weld joint, and thickness of the plate could alter the weld bead geometry results that have been obtained during these tests. Thus, an analytical model was developed to provide an understanding as to what can be expected when changes are made in these quantities. As a result of this work, the following conclusions have been obtained:

1. In the case of a stationary arc weld, the cross section of the weld puddle revealed a humped contour configuration not usually observed. Such a configuration cannot be predicted by assuming a normal energy input distribution and standard heat conduction theory. Effects such as surface tension, arc jet forces, or Lorentz forces due to the current in the weld pool need to be accounted for in order to explain such phenomena.

2. In the current range investigated (60 to 150 A) the width and depth of penetration increased linearly with weld current. These results are expected when the penetration is relatively small compared to the plate thickness as was the case in these experiments.

3. Decreasing the weld speed from 10 ipm to 5 ipm increased weld penetration but less than a factor of two. Calculational results verified these conclusions. At lower weld speeds a greater fraction of the energy input is transferred by conduction away from the weld puddle producing the relatively smaller puddle dimensions.

4. As the nominal power (V x I) increased with increased arc gap due to an increased arc voltage, the process efficiency decreased. This was noted for:
 a) The case of the moving arc (5 ipm and 10 ipm). In these experiments the depth of penetration increased with decreased arc gap for low current, but had little effect for currents above 120 A.
 b) A stationary arc. The depth of penetration was invariant to arc gap for currents below 100 A, but increased with decreasing arc gap for currents greater than 100 A.

5. He-24% A-0.33% O2 shield gas significantly increased the heat input to the weld relative to using argon as a shielding gas. This is attributed to the higher ionization potential of helium which results in higher arc temperatures. The use of nitrogen addition to the argon shield gas also increased the heat input to the weld area relative to pure argon. The use of a dissociative
gas such as \(N_2 \) is believed to increase the magnitude of the energy input to the weldment.

6. The depth, width, area, and arc voltage increased as the electrode tip angle was decreased from 180 to 30 deg. The trend reversed for the tip angle of 15 deg. This is contrary to published results on stainless steel plates. The size of the flat on the tip of the electrode also affected the final weld configuration. As the flat was decreased from 0.075 in. to 0.005 in. the area, depth, width, and voltage increased.

7. A finite element heat conduction model was developed to predict the plate temperature. However, additional effort is needed to further refine some of the assumptions employed in the model and to better estimate surface heat losses, liquid pool heat transfer characteristics, and the energy input distribution from the arc.

Acknowledgments

We would like to express our appreciation to G. N. Grimm, F. Salay, and F. E. Pawloski, Jr. for their assistance in conducting these experiments.

This report was prepared as an account of work sponsored by the United States Government. Neither the United States, nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

References

WRC Bulletin 202
January 1975

"Current Welding Research Problems"

Periodically the Welding Research Council surveys its Project Committees and University Research Committee for opinions and suggestions on important current welding research problems facing industry. The responses are classified according to subject area and the list of problems is published as a service to Industry, Government Agencies and researchers.

WRC Bulletin 202 presents a recent compilation of over 300 problems, grouped into the following subject areas: (1) Carbon and Low-Alloy Steels; (2) Pressure Vessels and Piping; (3) Structural; (4) Fatigue; (5) Residual Stresses and Stress Relief; (6) Stainless Steels and High Alloys; (7) Reactive and Refractory Metals; (8) Aluminum; (9) Nonferrous Metals; (10) Resistance Welding; (11) Welding Processes; (12) Welding Arcs; (13) Nondestructive Testing; (14) Brazing; (15) General.

The price of WRC Bulletin 202 is $5.50 per copy. Orders should be sent with payment to the Welding Research Council, 345 East 47th Street, New York, N.Y. 10017.
Five AWS Books
On Topics of Interest

C5.1-73, Recommended Practices for Plasma-Arc Welding and C5.2-73, Recommended Practices for Plasma-Arc Cutting examine the how-to-do aspects of these processes. The characteristics of the processes are discussed, the various components of the equipment are described and data for guiding prospective users in the setting up and use of the equipment are presented.

C5.3-74, Air Carbon-Arc Gouging and Cutting describes the air carbon-arc cutting process and supplies detailed information on equipment, base metals, areas of application, and safety precautions. In addition, it offers helpful suggestions on techniques for gouging, severing, beveling, and washing off excess metal. A special "trouble shooting" section, providing solutions to various problems, is also included.

C5.4-74, Recommended Practices for Stud Welding is intended to serve as a basic guide for those interested in attaching fasteners by arc, capacitor-discharge, or drawn-arc stud welding. Included in the publication are stud and equipment descriptions, suggested qualification procedures and inspection methods, and recommended practices for welding. Following these suggested measures will permit the efficient use of studs in applications involving aircraft and aerospace fabrication, appliances, automotive vehicle manufacturing, boilers, bridge and building construction, equipment manufacturing, hardware, metal furniture, railroads, and shipbuilding.

Although compiled primarily for those concerned with titanium piping and tubing, the up-to-date information contained in D10.6-73, Gas Tungsten-Arc Welding of Titanium Piping and Tubing, will be of interest to anyone who welds titanium. Topics covered include: filler metal, joint preparation, procedures and technique, and weld quality tests.

Prices*

C5.1-73, Recommended Practices for Plasma-Arc Welding $4.00
C5.2-73, Recommended Practices for Plasma-Arc Cutting $2.00
C5.3-74, Air Carbon-Arc Gouging and Cutting $3.00
C5.4-74, Recommended Practices for Stud Welding $3.00
D10.6-73, Gas Tungsten-Arc Welding of Titanium Piping & Tubing $2.00

*Discounts: 25% to A and B members; 20% to bookstores, public libraries and schools; 15% to C and D members. Add 4% sales tax in Florida.

Send your orders for copies to the American Welding Society, 2501 N.W. 7th Street, Miami, Florida 33125.