Discussion on “Ferrite Morphology in High Molybdenum Stainless Steels”

“Ferrite Morphology in High Molybdenum Stainless Steels” by M. J. Cieslak and W. F. Savage was published as a Technical Note in the Welding Research Supplement of the July 1981 issue of the Welding Journal on pages 131-s to 134-s.

The publication of this item has since raised questions on the part of T. Boniszewski* whose comments appear below under Discussion. Corresponding responses on the part of M. J. Cieslak and W. F. Savage** follow under Authors’ Reply.

Discussion by T. Boniszewski

The authors have interpreted the quantitative differences in their hot cracking results of the three heats examined (their Fig. 1) purely from the standpoint of their own hypothesis — namely, that it is not just the ferrite content seen at room temperature, but the formation of ferrite as a primary solidification phase that is instrumental in the mitigation of hot cracking. Be it as it may, I do not think that their results can be used in such a way; and when researchers use inappropriate results to support their hypotheses, they are likely to discredit those hypotheses.

Table 1 of their Technical Note shows that, in addition to the variation in ferrite, the three heats have different S, P and Mn contents. Heat no. 2 which cracked most has the highest sum of S + P = 0.061%. With the weld ferrite content of 2.6, similar to the value of 2.0 in heat no. 1, it is not surprising that heat no. 2 cracked more than heat no. 1 whose S + P = 0.038%. At the same time, these two heats have similar Mn contents.

Heat no. 3 which did not crack showed:
1. About twice the ferrite content of heats no. 1 and 2.
2. S + P = 0.043%, i.e., similar to that of heat no.1 which cracked less than heat no. 2.
3. Mn content about 5 times as high as those of the other two heats.

It is not true (unfortunately, insufficiently publicized because of the common preoccupation with panaceas) that ferrite is the only factor controlling hot cracking in Cr-Ni and Cr-Ni-Mo austenitic steel weld metals. It has been known for several decades, and recently (Ref. 1) it has been very elegantly demonstrated by Brooks and Lambert (1978) that the ferrite content needed to stop hot cracking depends on the S + P content.

Other factors being equal, with the increasing S and P contents, more and more ferrite is needed to prevent the occurrence of cracking.

Where low or nil ferrite weld metals are needed, as for urea plant applications, microcracking is mitigated or suppressed in 316L type weld metal by having low impurity levels, with S and P being below 0.010% each. Also, Mn is increased, e.g., to 3-4%, and an addition of nitrogen at about 0.15% helps too.

To produce results supporting their hypothesis, Cieslak and Savage ought to design a series of heats in which other factors, bearing upon hot cracking susceptibility (e.g., S, P, Mn, etc.), are kept reasonably constant. There should be heats with the same ferrite content as measured at room temperature, but with the proven record of the differences in the primary solidification history. Let us see whether or not such heats show cracking differences. Otherwise, consideration of their hypothesis is pointless.

Reference

Authors’ Reply

Hot cracking is a phenomenon associated with the segregation of certain alloying elements to interdendritic and intergranular volumes during the solidification of welds and castings. It has been widely established that tramp elements, such as sulfur and phosphorus, increase the hot cracking susceptibility of many stainless steels and nickel base alloys. It has also been shown for many years that a few volume percent ferrite in the room temperature microstructure of austenitic stainless steel weldments and castings reduces the hot cracking sensitivity of these alloys.

Recently, much research effort has been concentrated on determining the reasons for the aforementioned observations. Hot cracking studies performed by Masumoto et al. (Ref. 1), Arata et al. (Ref. 2), and Luppold and Savage (Ref. 3) all concluded that hot cracking susceptibility was directly related to the sequence of solidification in austenitic stainless steels. Those alloys which solidified with austenite as the primary phase were far more susceptible to hot cracking than those which solidified as primary delta ferrite.

Astrom et al. (Ref. 4) have shown that phosphorus has a greater solubility in delta-ferrite than in austenite. Lyman (Ref. 5) has reported similar results for both sulfur and phosphorus. Morgenfeld et al. (Ref. 6) have shown, via a sulfur micro-print technique, that sulfur is segregated to interdendritic volumes in welds which solidify as primary austenite. Conversely, sulfur was shown to be segregated uniformly throughout the dendrite cores in primary delta-ferrite weldments, strongly reducing the amount found in interdendritic volumes, positions critical from a hot cracking viewpoint.

At the AWS 62nd Annual Meeting held in Cleveland, Ohio, April, 1981, we presented a paper which addressed most of the comments (Ref. 7) made by Dr. Boniszewski. We performed Varestraint hot cracking tests on both a heat of 304-L and CF-8M stainless steel, using combinations of Ar/N₂ as the shielding gas to vary the solidification mechanism and the ferrite content. As such, the nominal alloy composition (S, P, Mn, etc.) did not change. On the other hand, when the primary solidification mode changed from delta-ferrite to austenite, the hot cracking susceptibility of both alloys increased dramatically. Furthermore, a saturation level of hot cracking was reached for both alloys as the room temperature ferrite content continued to drop.

Our STEM/EDS analyses very clearly pointed out that primary delta-ferrite could be readily distinguished from interdendritic eutectic ferrite based upon compositional profiles and chemical analyses. Our earlier interpretation, based

* T. BONISZEWSKI is Manager—Technology Department, ESAB LTD., Gillingham, Kent, England.
** M. J. CIESLAK is a Steel Founders’ Society of America Graduate Fellow and W. F. SAVAGE is Professor of Metallurgical Engineering and Director of Welding Research, Rensselaer Polytechnic Institute, Troy, New York.
upon metallographic evidence and lower resolution electron microprobe data, was also valid and completely supported by subsequent experimentation.

Mr. Bonisewski's comment of holding a constant room temperature ferrite content while clamping the solidification mechanism is an interesting suggestion, but very difficult to apply practically. We have not seen a situation where the amount of room temperature eutectic ferrite has been in excess of 3 vol-%. On the other hand, primary delta-ferrite alloys subjected to the same welding conditions generally have at least 5 vol-% ferrite in their room temperature microstructures. In fact, the amount of room temperature ferrite found in these microstructures may be influenced by the cooling rate from the solidus. Quench experiments performed by Arata et al. (Ref. 8) indicate that at the solidus, in excess of 75% of the microstructure may be delta-ferrite in a commercial 304 stainless steel. Quoting from the same reference:

"We should also pay attention that the large amount of the primary delta-ferrite affects strongly the susceptibility to hot cracking. Therefore, the effect of the amount of ferrite at room temperature on hot cracking susceptibility of austenitic stainless steel weld metal should be primarily investigated by replacing with the amount of primary delta-ferrite during solidification."

We have performed similar quench experiments in our laboratory and have generated similar results for CF-8M.

We agree with Mr. Bonisewski that high levels of tramp elements are harmful even in primary delta-ferrite alloys. In an earlier paper (Ref. 9), we found a heat of CF-8M with 17 vol-% ferrite in the weld metal to be extremely sensitive to hot cracking. This alloy had a sulfur content of 0.032% and a phosphorus content of 0.046%, far in excess of normal commercial practice. We attribute the hot cracking sensitivity to an inability of the primary delta-ferrite dendrites to effectively absorb enough of these elements prior to the terminal transient stage of solidification. We also agree that lowering the sulfur and phosphorus levels below 0.010% is essential in primary austenite alloys. But again, we feel that this is a direct result of the solidification mechanism in these alloys, not a result of the room temperature ferrite content per se.

The authors referred to by Mr. Bonisewski make no attempt to explain their results in terms of hot cracking and solidification theory. Furthermore, the standard 304-L alloy used to qualify their "in-house" hot cracking test was ill-defined. No chemical composition or weld metal ferrite content was published. Optical metallography was not performed to develop a microstructure-hot cracking relationship.

Finally, the purpose of our Technical Note was to point out a microstructure-hot cracking relationship which we had observed during an ongoing study of hot cracking in alloy CF-8M. Our interpretation was based upon experience in studying the solidification mechanics of many alloy systems, not solely stainless steels, and by extensive investigations into the hot cracking phenomenon of several different grades of stainless alloys. Furthermore, the vast body of published experimental data support both our hypotheses and our conclusions.

References

Correction Notice
See “Solidification Cracking and Analytical Electron Microscopy of Austenitic Stainless Steel Weld Metals” by M. J. Cieslak, A. M. Ritter and W. F. Savage in the January 1982 issue of Welding Journal, pages 1-s to 8-s. The authors state that Conclusion 6 on page 8-s should be amended to read:

"Eutectic-ferrite may be formed at the dendrite interstices in some alloys which solidify as primary austenite. Eutectic-ferrite can be distinguished from primary delta-ferrite at room temperature in three ways: the position of ferrite in the microstructure, the occurrence of precipitates on the eutectic-ferrite/austenite interfaces, the differences in elemental STEM profiles."

WRC Bulletin 274
January, 1982

International Benchmark Project on Simplified Methods for Elevated Temperature Design and Analysis: Problem II—The Saclay Fluctuating Sodium Level Experiment; Comparison of Analytical and Experimental Results; Problem III—The Oak Ridge Nozzle to Sphere Attachment
by H. Kraus

Problem II. Recently, experimental results became available on the second benchmark problem on simplified methods for elevated temperature design and analysis: the Saclay fluctuating sodium level experiment. These are compared to previously published numerical and analytical results in WRC Bulletin 258, May 1980.

Problem III. The Oak Ridge Nozzle to Sphere Attachment is analyzed by finite element computer programs and by approximate analytical techniques. The methods are described and the results obtained by each are compared. No experimental data are available.

Publication of these reports was sponsored by the Subcommittee on Elevated Temperature Design of the Pressure Vessel Research Committee of the Welding Research Council.

The price of WRC Bulletin 274 is $10 per copy, plus $3.00 for postage and handling. Orders should be sent with payment to the Welding Research Council, 345 East 47th St., New York, NY 10017.
AN INVITATION TO AUTHORS

Gentlemen:

The American Welding Society will hold its 64th Annual Convention and 1983 AWS Welding Show in Philadelphia, Pennsylvania, during April 25-29. One of the most important events of our 64th Annual Convention will be its Professional Program.

It is indeed a pleasure to invite you as Authors to be participants in the Professional Program of our 64th Annual Convention. On this occasion, the Society is offering an opportunity to Authors to bring the results of outstanding work on their part to the attention of our entire membership, the welding industry, and the nation's metalworking industries.

To this end, the Society's Technical Papers Committee will be happy to receive your application for participation in our 64th Annual Convention Professional Program; the Committee is inviting 500-word summaries for, basically, two categories of papers:

1. Applied Technology—unusual industrial or field applications of welding, new process or significant equipment developments, surfacing, unique welding case histories, education, safety and health, cost studies—also related topics such as nondestructive testing of weldments as well as maintenance and repair.

2. Research Oriented—results of significant laboratory research and/or development projects, welding metallurgy, weldability studies, weld cracking or fracture, new test methods, arc physics—also related topics such as fracture mechanics.

To apply for participation in our 64th Annual Convention Professional Program, please complete both sides of the Author Application Form on the facing page. Also, please prepare a 500 to 1,000 word summary of what you intend to say in your paper and mail with the completed form to AWS.

The Technical Papers Committee will screen all Author applications and summaries (also the manuscripts of completed papers if included), and Authors will be notified during late October or early November concerning acceptance. Completed Author Application Forms and accompanying 500-word summaries must be mailed by August 16, 1982, to assure consideration for the 64th Annual Convention Professional Program.

Please note that, as it screens Author Applications and summaries, the Technical Papers Committee will be looking for: (1) the newness of information and need for the information in its field, (2) technical accuracy, (3) clarity of presentation, and (4) adaptability for oral presentation (a paper consisting basically of complicated tables would not be suitable for oral presentation).

Sincerely yours,

Perry J. Rieppel
Acting Executive Director

May 1, 1982
AUTHOR APPLICATION FORM

FOR

64th Annual AWS Convention
Philadelphia, PA, April 25-29, 1983

Author's Name ..

Company or Organization ...

Title or Position ... Telephone: Area Number

MAILING ADDRESS ...

City ... State Zip ..

If there are to be joint Authors, give name(s) of other author(s) ..

Name ... Address ..

Name ... Address ..

PROPOSED TITLE (10 words or less): ..

SUBJECT CLASSIFICATION:

Classify your paper by placing check mark in appropriate box:

Applied Technology □ Research Oriented □ Other □

SUMMARY:

- Type, double spaced, a summary of not less than 500—but preferably not more than 1000—words and attach to this form.
- Be sure to give sufficient information to enable the Technical Papers Committee to obtain a clear idea of content of the proposed paper; confine background to about 100 words. Also be sure to emphasize Results and Conclusions since this material, together with information on what is NEW, will have a very important bearing on the decision of the Technical Papers Committee.
- If complete manuscript is available, in addition to summary, please attach two copies to this form.
- Application Form and summary must be postmarked not later than August 16, 1982, to ensure consideration for inclusion on the 64th Annual AWS Convention Professional Program.

MANUSCRIPT DEADLINES:

- All manuscripts should be in the hands of the Technical Papers Committee not later than February 28, 1983. If received prior to December 15, 1982, every effort will be made to publish them in advance of meeting.
- It is expected that the Committee’s selections will be announced sometime in October or November 1982.
- If your paper is made a part of the program, which of the following manuscript deadlines will you be able to meet? December 15, 1982 □ January 31, 1983 □ February 28, 1983 □

PRESENTATION AND PUBLICATION OF PAPERS:

- Has material in this paper been previously presented in meeting or published?
 Yes □ No □ When? ..
 Where? ..
- Following presentation at the 64th Annual AWS Convention, would you accept invitations to present this paper before AWS Sections? Yes □ No □
- Papers accepted for presentation become the property of the Society with original publication rights assigned to the Welding Journal.
TO AUTHOR(S): Please briefly answer questions in spaces provided below—also please note that answers given below are required in addition to 500 to 1,000 word Summary. Please use typewriter.

(1) WHY WAS THE WORK DONE?

(2) WHAT WAS DONE?

(3) WHAT WAS FOUND?

(4) WHAT IS THE SIGNIFICANCE OF YOUR RESULTS?

(5) WHAT ARE YOUR MOST IMPORTANT CONCLUSIONS?

OTHER COMMENT (Optional)

RETURN TO AWS HEADQUARTERS. MUST BE POSTMARKED NOT LATER THAN AUGUST 16, 1982, TO ENSURE CONSIDERATION.

Be sure to attach 500-1,000 word Summary when mailing completed Author's Application Form to AWS Headquarters.