The Melting Rate of a Single-Phase Welding Wire

A single differential equation linking melting rate, electrode extension and current density is proposed

BY R. L. BISH

ABSTRACT. Results of an analytical investigation of the rate at which a single-phase welding wire melts are presented. Both the heat conduction and transport terms are considered. By use of the Wiedmann-Franz law, the resulting equation may be reduced to an ordinary differential equation having constant coefficients. It is shown, by means of this equation, that Lesnewich’s empirical rule may be derived, theoretically, when the wire extension is large. A method of obtaining a nearly exact relation connecting melting rate, wire extension and current density for single-phase wires is outlined.

Introduction

Two major problems of arc welding are those of describing, in useful ways, the cooling rates in the metallic body being welded and, in the case of nonautogenous welding, the melting rate of the filler metal. Attempts to solve these problems were first made by Rosenthal (Ref. 1), who applied to them the moving heat source theory, which he developed independently of the earlier mathematical investigations of moving heat sources made by Wilson (Ref. 2).

While the solutions that Rosenthal obtained remain useful for points remote from the molten zones, they are imperfect in several ways (Refs. 3, 4), and efforts are needed to make allowance for the temperature variations exhibited by the thermophysical constants of most metals.

Indeed, a very serious obstacle in the mathematical analysis of welding-heat conduction problems is presented by the fact that, while the specific heats of most metals vary only slightly between standard temperature and the melting points, over these same ranges the thermal conductivities change by substantial amounts. This effect gives rise to a term in the governing equation of the moving heat source theory that remains proportional to the square of the temperature gradient. Since the temperature gradients encountered in welding can be very steep, this effect generally precludes the use of analytical solutions.

In the case, however, of the wire melting rate problem, there exists a remarkable simplification, which it is the purpose of this paper to describe. The method involves the use of the physical relation connecting the electrical and thermal conductivities of metals to reduce the governing equation to an ordinary differential equation having constant coefficients.

In order to achieve this, the Wilson/Rosenthal theory must first be redeveloped so that the conducted heat flux density becomes the dependent variable in the governing equation. This subject is detailed below.

Governing Equations

In the case of a heated body that moves through space, there exists a heat flux due to transport, the density of which, referred to stationary space, equals \(\rho C v \Phi \), where \(\rho \) and \(C \) respectively, are the density and specific heat of the body, \(v \) is its speed, \(n \) is a unit vector in the direction of movement, and \(\Phi \) is the temperature.

Thus, if \(J \) denotes the conducted heat flux, also referred to stationary space, then by energy conservation, if \(S \) is any fixed surface (so the mass of the body moves through it) in which \(\tau \) is the volume

\[
\int (J + \rho C v \Phi) \cdot dS = \int (\nabla J + \sigma \nabla \Phi) \cdot d\tau
\]

where heating is assumed to arise from an electric current of density \(j \), and \(\sigma \) is the electrical conductivity of the body.

By applying the Gauss divergence theorem and the rule for the divergence of a product of a vector and scalar (Ref. 2),
we then obtain, in the usual way, assuming pC to equal a constant,
\[\text{div} J + pC \text{grad } \Phi = \frac{j^2}{\sigma} \]
But, by Fourier's law
\[J = -k \text{grad } \Phi \quad (1) \]
where k is the thermal conductivity of the body, and so
\[\text{div } J - \lambda \text{grad } \lambda = \frac{j^2}{\sigma} \quad (2) \]
where
\[\lambda \kappa = pC \quad (3) \]
The fact that pC is nearly constant in single-phase metal bodies is well illustrated by the data for aluminum shown in Fig. 1. In Fig. 2, on the other hand, is shown the variation of K.

We now apply these equations to a welding wire fed at a steady speed.

Application to a Moving Wire

If ξ denotes distance along the welding wire measured from the feed tube exit (Fig. 3), then we may write
\[\text{div } J = \frac{dj}{d\Phi} \frac{d\Phi}{d\xi} \quad (4) \]
while Equation 1 becomes
\[J = -k \frac{d\Phi}{d\xi} \]
With these expressions Equation 2 then becomes
\[\frac{j}{\kappa} \frac{dj}{d\Phi} - \lambda v j = \frac{j^2}{\sigma} \]
or, on multiplying through by $-\kappa$ and using Equation 3,
\[J \frac{dj}{d\Phi} + pCv j = -\left(\frac{k}{\sigma}\right)j^2 \]
But, by the Wiedmann-Franz law (Ref. 7), if we express Φ in Kelvin
\[\frac{\lambda}{\sigma} = \left(\frac{\pi k^2}{3e^2}\right) \Phi \]
where k is Boltzmann's constant and e is the electron charge. Thus, the governing equation for the melting rate of the wire becomes
\[\frac{dj}{d\Phi} + \left(\frac{\pi k^2}{3e^2}\right) \Phi + pCv = 0 \quad (5) \]
This is an ordinary differential equation with constant coefficients, and has the solution
\[j = \mu \Phi \quad (6) \]
where μ equals a constant, found upon substituting into Equation 5, to satisfy the quadratic equation
\[\mu^2 + (pCv) \mu + \left(\frac{\pi k^2}{3e^2}\right) = 0 \quad (7) \]

On the other hand, returning to Equation 4, we see, by Equation 6, that
\[\frac{d\Phi}{d\xi} = -\frac{\mu}{k} \Phi \]
and on integrating we obtain
\[\Phi = \Phi_0 \exp \left(-\mu \int_{\xi_0}^{\xi} \frac{dj}{d\Phi} \right) \quad (8) \]
where Φ_0 equals the temperature of the feed tube exit. If Φ_m is the melting temperature of the material of the wire and h is its extension then
\[\Phi_m = \Phi_0 \exp \left(-\mu h \int_{\xi_0}^{\xi} \frac{dj}{d\Phi} \right) \quad (9) \]
and, on writing $s = \xi/h$, this equation becomes
\[\Phi_m = \Phi_0 \exp \left(-\mu \int_{1}^{s} \frac{ds}{\kappa} \right) \quad (10) \]
which implies that μh depends only on $\kappa(\Phi), \Phi_0$ and Φ_m. Thus, for a given material and a given feed tube exit temperature
\[\mu h = B \quad (11) \]
where B equals a constant, which may be calculated as explained below.

Calculation of B

Starting with the approximation $\kappa = \kappa_0$, where κ_0 is the value of κ at the feed tube exit, Equation 10 enables an initial approximation to the value of B to be found. This equals $-\kappa \ln \left(\Phi_m / \Phi_0 \right)$. We may substitute this value for μh into Equation 8 to obtain an initial approximate temperature distribution along the rod. A corresponding distribution of $\kappa(\Phi)$ values may then be obtained from tables of thermophysical data. These values enable the integral in Equation 10 to be numerically evaluated for various points along the wire extension. Then, by Equation 10, a revised value of μh may be calculated and a revised temperature distribution calculated by means of Equation 8, leading by the same procedure to a new value for μh. By successive approximations of this
kind, a sequence of \(B \) values is obtained, which, if the calculations have been properly performed, converges toward the constant \(B \) in Equation 11. Calculations for aluminum wires were made as outlined, using the data in Fig. 2, and assuming a feed tube exit temperature of 400 K. The numerical integrations were carried out using Simpson’s rule, with coarse and fine intervals of the subdivision of the normalized wire extension, to enable errors, due to the use of numerical integration, to be evaluated.

The sequence of values thus obtained for \(B \) was: -173, -146.5, -148.8, -148.3, W/m/K, indicating an actual value for \(B \) close to -148.3 W/m/K.

Comparison with Experimental Results

Wire melting rates encountered in arc welding were the subject of extensive measurement by Lesnewich (Ref. 8), who found that the melting rate could be related to current density and electrode extension, \(h \), by an expression of the form

\[
\nu = A h^2 + C \frac{1}{J}
\]

where \(A \) and \(C \) are constants for a particular material. Halmoy (Ref. 9) claims that this rule only holds if \(h \) is relatively large.

On the other hand, from Equations 7 and 11, it is simple to show that

\[
\nu = \frac{B}{\rho C h} + \left(\frac{\pi k^2}{3e^2 \rho C} \right) \frac{1}{J} \quad (12)
\]

where \(h \) is the wire extension, and if \(h \) is large, this tends to the same form as Lesnewich’s rule. On the other hand, if the wire extension is small, Equation 12 predicts that the melting rate should pass through a minimum at an extension equaling \(\sqrt{3e} \frac{B}{\pi k} \).

Conclusions

By incorporating the Wiedmann-Franz law into the Wilson/Rosenthal moving heat source theory, an equation has been obtained that, in the case of a wire of any single-phase metal, becomes an ordinary differential equation with constant coefficients. This equation takes into account both the heat transport and heat conduction terms and makes proper allowance for the variations with temperature of the electrical and thermal conductivities of the material of the wire. Moreover, the solution of this equation leads to the conclusion that Equation 11 holds, and in case of long electrode extensions, this leads to a relation between melting rate, welding wire extension and current density of the same form as that found experimentally.

For very short electrode extensions, on the other hand, the theory predicts that the welding wire melting rate should pass through a minimum at an extension that varies inversely with the current density. Halmoy’s results suggest that this effect is real.

The constant \(B \) in Equations 11 and 12 may be calculated by an iterative procedure involving Equations 8 and 10, and by this means has been found to equal, for aluminum electrodes, about –148.3 W/m/K, assuming a feed tube exit temperature of 400 K.

References

WRC Bulletin 361
February 1991

This Bulletin contains two reports that compare the French RCC-M Pressure Vessel Code and the U.S ASME Section III Code on Design of Nuclear Components and Piping Design Rules.

(1) Improvements on Fatigue Analysis Methods for the Design of Nuclear Components Subjected to the French RCC-M Code
By J. M. Grandemange, J. Heliot, J. Vagner, A. Morel and C. Faidy

(2) Framatome View on the Comparison between Class 1 and Class 2 RCC-M Piping Design Rules
By C. Heng and J. M. Grandemange.

Publication of this bulletin was sponsored by the Pressure Vessel Research Council of the Welding Research Council. The price of WRC Bulletin 361 is $30.00 per copy, plus $5.00 for U.S. and $10.00 for overseas, postage and handling. Orders should be sent with payment to the Welding Research Council, Room 1301, 345 E. 47th St., New York, NY 10017.

WRC Bulletin 362
April 1991

Edited by A. K. Dhalla

The recommended practices for elevated-temperature design of liquid metal fast breeder reactors (LMFBR) have been consolidated into four volumes to be published in four individual WRC bulletins.

Volume I: Current Status and Future Directions (WRC Bulletin 362)
Volume II: Preliminary Design and Simplified Methods (WRC Bulletin 363)
Volume III: Inelastic Analysis (WRC Bulletin 365)
Volume IV: Special Topics (WRC Bulletin 366)

Volume I presents the current status of the international design codes and structural technology for LMFBR's. Structural components designed by various countries that were found to be successful for long-term elevated-temperature operation are included.

Publication of this bulletin was sponsored by the Committee on Elevated Temperature Design of the Pressure Vessel Research Council. The price of WRC Bulletin 362 is $45.00 per copy, plus $5.00 for U.S. and $10.00 for overseas, postage and handling. Orders should be sent with payment to the Welding Research Council, Room 1301, 345 E. 47th St., New York, NY 10017.