Technical Note: Preliminary Results on Underwater Laser Beam Welding of Steels

Underwater welding with a laser shows some promise as an alternative to conventional shielded metal arc "wet" welding

BY G. J. SHANNON, R. NUTTALL, J. WATSON AND W. F. DEANS

An investigation is underway at The University of Aberdeen using a high-power carbon dioxide laser for direct underwater butt joint welding of steels to assess the quality of welds compared to in-air laser welds. This preliminary work forms part of a general study of the application of laser beam welding and cutting within the offshore oil and gas industry. To this end, the feasibility of laser beam welding in both direct "wet" conditions and in "dry" hyperbaric conditions is being explored. Considerable advantages may lie in the remote direct "wet" repair of pipelines and structural members in terms of convenience, low cost and freedom from diver intervention. The laser beam welding mechanism, being fundamentally different from arc welding processes, may be able to overcome the normal problems of weld embrittlement and porosity when "wet" welding is attempted.

Successful laser beam welding underwater was first reported by Sepold and Teske (Ref. 1) who accomplished a number of partially penetrating bead-on-plate welds on mild steel. Recent work by Dunn, et al. (Ref. 2), has investigated the penetration of laser beams through water and the depth of holes that can be drilled in acrylic. In the current work, our primary concern is with the butt joint welding of steel plate without a filler metal. This technical note provides a comparison of underwater and in-air weld characteristics for fully penetrating butt joint welds, and provides an insight into the propagation characteristics of a high-power beam in water. The effect of increasing water depth is also investigated.

Experimental Results

To establish a control, or bench mark, a series of welds were performed in air, using a 1.2-kW CO₂ laser (Laser Ecosse MFK) under optimal welding conditions on 2.5-mm-thick (1 in.) BS 4360-43A steel. Following this, a further series of welds was completed under identical conditions save that the samples were totally submerged in water at various depths from skin covering to 14 mm (0.6-in.). The physical appearances of typical in-air and in-water weld beads are shown in Fig. 1. The underwater weld performed under 1 mm (0.04-in.) water depth (Fig. 1A) exhibits a similar appearance in terms of size and microstructure to the in-air weld (Fig. 1B), although underfill in the cap and occasional porosity are present. The mechanical properties of the two welds are comparable — Table 1. It is interesting to note the microhardness values were also similar.

Figure 2A shows that weld depth is most affected by speed at greater water depths, between 18 to 60 mm/s (0.71-2.4 in/s), with less effect at higher speeds. Comparing the welds performed under other depths of water shows that at shallow depths, up to 2 mm (0.08 in.), the weld penetration dimensions are unaffected, as shown in Fig. 2B. At approximately a 4 to 6 mm (0.16-0.24 in.) depth, a slight increase is observed. Thereafter, further increases in water depth produce a steady reduction in the penetration.

Discussion

The achievement of high-quality welds obtained at depths of water up to 14 mm (0.6 in.) is an unexpected result (although recent results obtained by Dunn, et al., Ref. 2, have spoken of the existence of a "beam propagation channel" through water when irradiated by high-power CO₂ laser radiation). The high irradiance of the laser beam (>10⁶ W/cm²) seems to produce a "wave guiding" effect in the water due to the vaporizing action of the beam, which produces a low attenuation corridor through the water. It is this which seems to allow the formation of deep penetration welds. Although there is the complication of absorption in the plasma and the heated workpiece, the beam attenuation is estimated using

\[E = E_0 \exp(-\alpha d) \]

<table>
<thead>
<tr>
<th>Metallurgical Test</th>
<th>In-Air Bench Mark Weld</th>
<th>Underwater Weld</th>
</tr>
</thead>
<tbody>
<tr>
<td>Micro Hardness (HV)</td>
<td>Base metal 199 ± 8</td>
<td>Base metal 190 ± 6</td>
</tr>
<tr>
<td>Fusion 256 ± 18</td>
<td>Failure in the base metal</td>
<td>Failure in the base metal</td>
</tr>
<tr>
<td>HAZ 211</td>
<td>Yield strength 270 kN/m²</td>
<td>Yield strength 275 kN/m²</td>
</tr>
<tr>
<td>Sectioning</td>
<td>Sound microstructure</td>
<td>Cap underfill and spheroidal carbide formation</td>
</tr>
<tr>
<td>Radiography</td>
<td>Sound</td>
<td>Porosity (5%), with occasional underfill</td>
</tr>
</tbody>
</table>

G. J. SHANNON, J. WATSON and W. F. DEANS are with the Department of Engineering, Kings College, University of Aberdeen, Aberdeen, Scotland, U.K. R. NUTTALL is with North East Corrosion Engineers, Aberdeen, Scotland, U.K.
to be around 1.5 cm\(^{-1}\), based on an incident irradiance at the surface of the water of 1.65 \(\times 10^6\) W/cm\(^2\) and a target surface irradiance of 9 \(\times 10^5\) W/cm\(^2\). This latter figure is the normally accepted value of irradiance, which must be attained if keyholing is to be obtained. The attenuation of the beam through water would seem to be minimal and this value for \(a\) should be compared with the normally quoted value of around 900 cm\(^{-1}\) for absorption of 10.6 \(\mu\)m radiation in seawater (Ref. 3). Thus, it is evident that the laser beam may be able to propagate through considerable depths of water before the welding action is terminated.

The laser welding mechanism appears to show little difference between welding in-air or wet welding apart from a minimal irradiance attenuation. The majority of welds are mechanically sound, in both strength and hardness, although the welds over 10 mm (0.4 in.) depth contained porosity. The vaporizing action of the beam creates a beam corridor and adjacent steam/vapor annulus that seems to protect the weld from rapid quenching by the surrounding water. It is worth noting that comparable underwater shielded metal arc welds exhibit hardness values twice that of in-air welds. The apparent anomalous increase in penetration observed at certain depths may be the depth at which the wave-guiding effect vs. the beam attenuation is optimal.

Acknowledgments

The work discussed here was undertaken as part of EUREKA Program EU 194: Applications of High Power CO\(_2\) Lasers, and part funded by the DTI. The collaboration of our partners, Laser Installations, Laser Ecosse and The National Hyperbaric Center, within our part of the program is gratefully acknowledged. The continued support and enthusiasm of the University of Aberdeen and North East Corrosion Engineers is also greatly appreciated.

References