The Effect of Residual Stresses on Fatigue of Butt Joints

A theoretical model simulating the effect of residual stresses in welded butt joints agrees well with the available experimental data

BY T. N. NGUYEN AND M. A. WAHAB

ABSTRACT. In this paper, a theoretical analysis of the effect of residual stresses on the fatigue behavior of welded butt joints was developed by using linear elastic fracture mechanics (LEFM), superposition principle and finite element approaches. Various configurations of residual stresses in welded butt joints were considered and corresponding residual stress intensity factors were calculated by using Bueckner's and Kanazawa's weight functions for an edge and a central through-thickness crack in finite plate, respectively. Newman-Raju's empirical equation was also used for surface cracks. Fatigue life of butt joint welds subjected to various stress-induced treatments was calculated by using Paris's law with the effective range of stress intensity factor for zero-to-tensile loading \((R = 0)\) and compared with the available experimental data.

Compressive residual stresses introduced on the surface of the welded joints by various surface treatments, such as single- and multiple-point hammer peening, steel shot peening, glass peening, stress peening (loaded and peened) and tensile preloading, improved fatigue life of welded butt joints. The improvement of fatigue life is due to the early state of crack propagation with the size of crack length not exceeding the depth of the compressive residual stress field.

It was also found that the effect of a low level of compressive residual stress (less than 62 MPa) in terms of the fatigue strength improvement is of the same order as the effect of a postweld thermal stress relieving process. The contribution of hardness of the treated material to the improvement of fatigue life is obvious at a high level of compressive residual stresses.

Introduction

Fatigue behavior of welded structures is complicated by many factors intrinsic to the nature of welded joints. Normally, crack-like discontinuities such as slag inclusions, gas pores, incomplete fusion at the weld root or undercut at weld toes may be introduced into welded joints. Residual stresses that arise in welded joints as a consequence of incompatible thermal strains caused by heating and cooling cycles during the welding process also affect the fatigue behavior of the welded structures. Especially, a tensile residual stress of the order of yield magnitude may exist in as-welded structures, and may cause a detrimental effect on the fatigue behavior of the welded structure (Ref. 1).

Many studies related to the effect of residual stress in welded structures have shown that fatigue strength of welded structures may be improved by reducing the effect of tensile residual stress in as-welded components (Refs. 2-4) or even by mechanical treatments so that the compressive residual stresses are induced in welded joint regions (Refs. 5-7). This may be conducted by postweld thermal relieving heat treatments or mechanical peening processes. However, in practice, the majority of welded steel structures are not suitable for heat treatments and are put into service before welding residual stresses could be relieved. It means that surface treatments are the most convenient measures for the welded structures to improve their fatigue performance in terms of eliminating the effect of postwelding residual stresses.

It is well known that regions of compressive residual stresses retard the rate of fatigue crack growth while tensile residual stresses produce the opposite effect (Ref. 8). The effect of surface treatments in terms of introducing compressive residual stresses to improve fatigue strength of welded joints are reported by many authors (Refs. 5-7, 9). However, the theoretical analysis of the effect of compressive residual stress in welded structures on the improvement of fatigue strength and fatigue life is still not clear. Therefore, this study aims to reveal the theoretical explanations for the fatigue strength improvement due to the compressive residual stress introduced by various postweld surface treatments.

KEY WORDS

Residual Stress
Fatigue Life
Fatigue Strength
Welded Butt Joint
Surface Crack
Edge Crack
Central Crack
Stress Intensity Factor
Shot Peening

T. N. NGUYEN is a Ph.D. student and M. A. WAHAB is a Senior Lecturer in the Dept. of Mechanical Engineering, The University of Adelaide, Australia.
In this study, residual stress distributions are not measured but assumed, and based on the number of studies, related to residual stresses in as-welded and shot-peened welded joints (Refs. 2-9). A model for semi-elliptical surface cracks originating at the weld toe region in the center of the welded plate was constructed to evaluate the contribution of the weld geometry and residual stresses to the stress intensity factor based on linear elastic fracture mechanics (LEFM), superposition principle and finite element approaches. As a result, the effect of residual stresses on the fatigue behavior of welded joints can also be evaluated.

Modeling Concepts

When a fatigue crack is propagating through a residual stress field in a welded plate, the stress intensity at the crack front is influenced by the combined effect of local residual stress and the stress resulting from externally applied stress. The latter is influenced by weld geometry and crack-like inclusions in the weld. It means that the effective stress intensity factor of the crack front obtained by superimposing the solutions for the stress intensity factor due to residual stresses and the solutions for the stress intensity factor due to external loading (Ref. 10) as follows:

$$K_{\text{eff}} = K_{\text{app}} + K_{\text{res}} \quad (1)$$

Then the rate of fatigue crack growth can be described in Paris’ equation in terms of the range of effective stress intensity factors as:

$$\frac{da}{dN_p} = C' \Delta (K_{\text{eff}})^m \quad (2)$$

It is obvious from Equations 1 and 2 that the fatigue life and fatigue strength of the welded joint subjected to a residual stress field can be evaluated if the solutions for the stress intensity factors K_{res} and K_{app} are known. Solutions for the stress intensity factor due to various crack geometries are available from the literature in fracture mechanics and can be used for the fatigue assessment of welded structures. In this study, a semi-elliptical surface crack with aspect ratio $a/c = 0.2$ (Fig. 1) is assumed to be located at the weld toe as a result of weld toe undercut of the order of 0.1 mm ($a_i = 0.1$ mm). This conservative assumption was also supported by other researchers (Refs. 11, 12). Then the total fatigue life of the welded plate can be considered as the number of cycles needed for this initiated semi-elliptical surface crack to propagate through the thickness of the welded plate.

An empirical solution for the stress intensity factor due to a semi-elliptical surface crack in the center of a finite plate in Mode I loading is given by Newman and Raju (Ref. 13) as follows:

$$K_{sc} = S \cdot (\pi \alpha/Q) \cdot F(a/t, a/c, c/b, \phi) \quad (3)$$

However, by using this solution, the effect of residual stresses and weld geometry on the welded joint cannot be included because it only considers a flat plate with a surface crack subjected to remotely applied constant axial stress. No local stress raisers or residual stress conditions have been considered in this solution. In order to overcome this obstacle, the weight function method was applied to calculate the stress intensity factor, and it is necessary to assume the “similarity effect” between the stress intensity values of notched and unnotched bodies due to various crack shapes. It means that the ratios of stress intensity values between the notched and unnotched body are the same for surface crack, edge crack or central through-thickness crack. This assumption is already supported by other researchers (Refs. 14, 15).

When a welded joint is considered as a notched body, the following equations can be written:
Using Equations 4 and 5, the stress intensity factors due to the semi-elliptical surface crack at the weld toe for point A at a certain depth and surface crack front point B (Fig. 1) can be calculated if the stress intensity solutions for an edge crack and a central through-thickness crack on a welded and flat plate are known.

Using Bueckner's weight functions for an edge crack in a finite plate (Ref. 16) and Kanazawa's weight function for a central through-thickness crack (Ref. 8), stress intensity factors can be calculated as follows:

\[
K_{\text{ed}} = 2 \int S(x) \cdot m_1(a, x) \cdot dx
\]

\[
K_{\text{cen}} = 2 \int S(y) \cdot G(c, y) \cdot dy
\]

When \(S(x) \) and \(S(y) \) are the local stress distributions along potential crack directions \(x \) and \(y \), respectively (Fig. 1), then each of them should be a resulting stress due to the residual stresses and local stress subjected to external loading in the proper direction.

By using two-dimensional finite elements, the local stress distributions subjected to weld geometry can be calculated and fitted into the polynomial form for later use in the calculation of the stress intensity factor. The residual stress distribution patterns along \(x \) and \(y \) directions of the transverse-welded butt joints are assumed and based on the studies related to residual stresses from the literature (Refs. 2-10). The equations used for modeling of residual stresses in the as-welded condition and surface-treated conditions are given in the Appendix.

In this study, a transverse-welded butt joint with moderate weld geometry has been chosen with \(r = 1 \) mm, \(\theta = 30 \) deg, \(t = 6.35 \) mm (Fig. 1) with the assumption that geometry of the butt welded joint is unchanged along the plate width. Residual stresses in the as-welded condition and surface-treated condition along \(x \) and \(y \) directions are assumed to follow the patterns shown in Fig. 2. With the above assumptions, the stress intensity magnification factors \(M_{\text{A}_{\text{ed}}} \) and \(M_{\text{B}_{\text{ed}}} \) due to the combined effect of weld geometry and residual stresses can be obtained.

\[
\Delta K_{\text{eff}} = \Delta K_{\text{ge}} + \Delta K_{\text{re}}
\]

The crack-growth rates were calculated by assuming that Equation 2 is obeyed independently at points A and B at the crack front, and therefore, Equation 2 can be rewritten as:

\[
\frac{da}{dN_p} = C_A \cdot (\Delta K_{\text{eff}})^n
\]

\[
\frac{dc}{dN_p} = C_B \cdot (\Delta K_{\text{eff}})^m
\]

where \(C_B = 0.9^n \cdot C_A \) as suggested by Newman and Raju (Ref. 13).

By integrating Equations 8 and 9 simultaneously, the fatigue life and fatigue strength of a welded butt joint subjected to various levels of residual stresses in the as-welded condition and in the surface-treated conditions can be evaluated. A computer program was written to facilitate the numerical procedures discussed above and Simpson’s rule was used for the calculation of integrals. The material constants of Paris’s equations was assumed as \(m = 3, C_A = 3 \times 10^{-13} \) mm/cycle as recommended by Maddox (Ref. 1) for a wide range of structural steels. The failure criteria were chosen for the instant when the depth of the semi-elliptical surface crack in the through-thickness direction reached half of the plate thickness (a = 0.5t) or the effective range of stress intensity factor exceeded the fracture toughness of the base metal (whichever occurs first).

Results and Discussion

In this study, various levels of compressive residual stress fields introduced by particular postweld surface treatments such as single- or multiple-hammer peening (\(S_r = -152 \) and \(-172 \) MPa), glass or steel shot peening (\(S_r = -62 \) and \(-110 \) MPa) and stress peening (loaded and peened) (\(S_r = -172 \) MPa) were assumed based on available experimental data (Ref. 5). Maximum tensile residual stress in the as-welded condition was assumed to be at the level of the yield stress (\(S_r = 300 \) MPa), and low levels of tensile residual stresses are also assumed to simulate the stress-relieved condition (\(S_r = 0 \) and \(S_r = 14 \) MPa). Respective residual stress patterns are shown in Fig. 2. For the case of compressive residual stresses introduced by surface treatments, the peak of the tensile residual stresses along the through-thickness direction (x-direction) are assumed to be half of the order of magnitude of induced compressive residual stresses at the treated surfaces.
This assumption was based on the experimental results carried out by Wahab (Ref. 5). Using the effective depth of surface treatment \(d_{\text{eff}}\) taken from experimental data (Ref. 5) and the above assumption, the peak of self-balanced compressive residual stress at the opposite side of the treated surface can be evaluated as follows:

\[
S^*_{\text{rc}} = S_r (t-3d_{\text{eff}}) / (2t-3d_{\text{eff}}) \tag{10}
\]

The value of \(d_{\text{eff}}\) was 0.2 and 0.43 mm for glass and steel shot peening, 0.76 and 0.69 mm for single-point and multipletpoint hammer peening, and 0.7 mm for stress peening, respectively (Ref. 5).

For the as-welded condition, the magnitude of peak compressive residual stress is assumed to be the same as the maximum tensile residual stress at the weld toe surface and is located at the middle of the plate thickness \((S_{\text{MAX}} = -S_r)\). The distribution of surface residual stresses along the plate width (y-direction) was assumed constant for each case of surface treatments and was assumed to follow a cosine pattern in the case of the as-welded condition with the peak tensile residual stress located in the middle of the welded plate — Fig. 2.

Figure 3 shows the variation of magnification factors \(M_{\text{sc}}^k, r\) due to the combined effect of weld geometry and residual stresses calculated for assumed butt weld geometry \((r = 1 \text{ mm}, \Theta = 30 \text{ deg}, t = 6.35 \text{ mm})\). Figure 3A shows that compressive residual stresses reduce the value of \(M_{\text{sc}}^k\), at an early stage of crack growth, while tensile residual stresses tend to increase it. However, the effect of the low level of compressive residual stress on the order of 62 MPa is coincidental with the effect of a stress-relieved condition \((S_r = 0\) and \(S_r = 14 \text{ MPa})\).

Figure 3B shows the effect of residual stresses on the \(M_{\text{sc}}^k\) value across the width of the welded plate. The values of \(M_{\text{sc}}^k\) for each surface treatment are constant as a result of the same level of compressive residual stress introduced at the plate surface. However, values of \(M_{\text{sc}}^k\) were reduced compared with a "perfect" stress-relieved condition \((S_r = 0)\) subjected to a particular level of compressive residual stresses. In the as-welded condition due to the presence of tensile residual stresses, the values of \(M_{\text{sc}}^k\) are increased in an early stage of crack growth compared with the "perfect" stress-relieved condition \((S_r = 0)\) but decreased after the crack reached the length of the order of 0.08 times the plate width \((c/b = 0.08)\). This effect of tensile residual stresses depends on the magnitude of peak tensile residual stresses —
The values of \(K_{Wc,A} \) and \(K_{Wc,B} \) for the case of applied stress \(S = 150 \text{ MPa} \). Figure 4A shows the stress intensity factor \(K_{Wc,A} \), which increases by tensile residual stress and decreases by compressive residual stress due to the early stage of crack growth compared with that in the stress-relieved condition. As a result, compressive residual stress improves the fatigue life of a welded butt joint, while tensile residual stress decreases it. This conclusion is consistent with the results reported by other authors (Refs. 2–9). However, after the crack reached the depth of the order of 0.45 times plate thickness (0.45\(b \)), the stress intensity value \(K_{Wc,A} \) begins to decrease by the effect of tensile residual stress in the as-welded condition, while compressive residual stresses continue to decrease the value of \(K_{Wc,A} \) compared with the stress-relieved state. It means that fatigue crack growth at an early stage (crack length less than 0.45 times plate thickness) dominates the whole fatigue life.

Figure 4A also shows that there is no significant difference between the effect of low-tensile residual stress simulating a stress-relieved state (\(S_r = 0 \) and \(S_r = 14 \text{ MPa} \)) and at a low level of compressive stress on the order of 62 MPa. It means that the effect of low-compressive residual stress (less than 62 MPa) and the effect of the stress-relieving process on the fatigue behavior of welded butt joints are almost the same.

Figure 4B shows the effect of residual stresses on the stress intensity factor \(K_{Wc,B} \). However, after the transition point at the crack length on the order of 0.08 times plate width (0.08\(b \)), the effect of residual stress on \(K_{Wc,B} \) has a new feature. The values of \(K_{Wc,B} \) begin to increase by compressive residual stresses introduced by surface treatments. This can be explained by the change of residual stress patterns in a later stage of crack propagation.

Figure 5 shows the S-N fatigue curves in terms of the effect of residual stresses in welded butt joints. It is obvious that fatigue strength was improved by compressive residual stresses, while it was reduced by tensile residual stresses. The effect of the stress-relieved process and low compressive residual stresses (less than 62 MPa) are in the same scatter range.

Figure 6 shows a comparison between the stress intensity factors \(K_{Wc,A} \) and \(K_{Wc,B} \) for the welded condition, while compressive residual stresses continue to decrease the value of \(K_{Wc,A} \) compared with the stress-relieved state. It means that fatigue crack growth at an early stage (crack length less than 0.45 times plate thickness) dominates the whole fatigue life.

Figure 7 shows the comparison between calculated data of fatigue life with the available data (Ref. 5). It shows that the ratios between the experimental and predicted fatigue life are from 0.5 to 2.5. This difference between calculated life and experimental data is reasonable as the standard deviation (SD) of the log of experimental fatigue life data, log(N), is of the order of 0.201 (Ref. 5), i.e., 95% confidence limits of fatigue life (mean(N) ±2SD) (Ref. 1) are 0.4N and 2.5N. This indicates that the prediction by the model developed in this study is acceptable as it gives the prediction with the same error as the typical scatter band of fatigue life that occurs in fatigue testing practices.

Furthermore, Fig. 7 also shows that the difference between the experimental and predicted fatigue life tends to increase as the values of induced compressive residual stresses increase. It suggests that high microhardness of treated surfaces (Fig. 6) must have an accompanying effect beneficial for the fatigue life of welded butt joints. This conclusion is consistent with the effect of hardness on the improvement of fatigue life reported by Heeschen.
Conclusions

From the theoretical analysis of the effect of residual stresses in welded butt joints on its fatigue behavior, the following important conclusions can be drawn:

1) Compressive residual stresses induced on the surface of welded joints by various surface treatment methods, such as single- or multiple-point hammer peening, steel or glass shot peening, stress peening (loaded and peened) or tensile preloading, improve fatigue life and fatigue strength of welded joints.

2) The improvement of fatigue life is due to the early stage of crack propagation with the size of crack length not exceeding the depth of compressive residual stress field. Alter that length, the induced compressive residual stresses have a nonsignificant effect on fatigue life.

3) A low level of compressive residual stresses (less than 62 MPa) induced by surface treatment in terms of fatigue strength improvement is of the same order as the improvement obtained by post-weld thermal stress relieving treatment.

4) The contribution of surface hardness of the treated material on the improvement of fatigue strength is obvious at high levels of induced compressive residual stresses.

This analysis shows a basic understanding of the effect of residual stresses on fatigue crack propagation life and gives a good explanation for postweld surface treatments commonly used in practice to improve fatigue performance of welded structures. It also gives suggestions for more efficient use of postweld surface treatments for particular cases in engineering practice.

References

Nomenclature

- \(N_p \): fatigue crack propagation life
- \(N \): number of fatigue cycles to failure
- \(N_{cal} \): number of fatigue cycles calculated by the model
- \(N_{exp} \): number of fatigue cycles from experimental data
- \(C_{AI} \), \(C_{II} \): material constants in Paris's equation
- \(K_{app} \), \(K_{res} \), \(K_{eff} \): residual stress intensity factor effective stress intensity factor range of effective stress intensity factor
- \(\Delta K_{eff} \): range of effective stress intensity factor at A
- \(K_{ed} \): stress intensity factor for edge crack in finite plate
- \(K_{cen} \): stress intensity factor for central through-thickness crack in finite plate
- \(K_{W} \): stress intensity factor for surface crack in finite plate
- \(K_{W,cen} \): stress intensity factor for central through-thickness crack
- \(K_{W,A} \): stress intensity factor for semi-elliptical surface crack in welded plate
- \(K_{W,B} \): stress intensity factor for semi-elliptical surface crack in welded plate
- \(K_{W,c,A} \): stress intensity factor at point A for semi-elliptical surface crack in welded plate
- \(K_{W,c,B} \): stress intensity factor at point B for semi-elliptical surface crack in welded plate
- \(M_{B,r} \): stress intensity magnification factor produced by weld profile geometry and residual stress in through-thickness direction
- \(M_{B_B} \): stress intensity magnification factor produced by weld profile geometry and residual stress in through-thickness direction
- \(\phi \): parametric angle of the ellipse
- \(d_{eff} \): effective depth of surface treatments
- \(a_i \): crack initiation length
- \(a_f \): final crack length
Sr(X) remotely applied nominal stress; also fatigue strength of welded butt joint
x through-thickness distance from weld toe
y through plate width distance from center of plate
Sw(x) residual stress distribution along x direction
Sw(Y) residual stress distribution along y direction
Sr(X) the peak of compressive residual stress on the opposite side of treated surface
Sr(x) local stress distribution along x direction induced by weld geometry
Sr(y) local stress distribution along y direction induced by weld geometry
S(x) resulting stress distribution along potential crack line in x direction (S(x) = Sr(x) + Sw(x))
S(y) resulting stress distribution along potential crack line in y direction (S(y) = Sr(y) + Sw(y))
Sr residual stress at weld toe surface
Smax_t peak tensile residual stress along x direction
Smax_c peak compressive residual stress along x direction
m(a,x) Bueckner's weight function for edge crack in a finite strip
G(c,y) Kanazawa's weight function for through-thickness central crack in finite plate
R cyclic stress ratio R (R = Kmin/Kmax)

Appendix

The equations used for modeling of residual stresses in this study are as follows:
1) In the as-welded condition:

 \[
 S_t(x) = Sr(1 - 4x/t) \quad \text{if} \quad 0 \leq x \leq 0.5t \\
 S_t(x) = Sr(4x/t - 3) \quad \text{if} \quad 0.5t < x < t \\
 S_r = \text{Sr} \\
 \]
2) In surface-treated condition:

 \[
 S_t(x) = Sr(x/def - 1) \quad \text{if} \quad 0 < x < 1.5def \\
 S_t(x) = Sr\left\{\frac{(t' - 0.75deft)^2}{t'^2 - 1}\right\} \quad \text{if} \quad 1.5deft < x < t \\
 S_r = \text{Sr} \\
 \]

\[S_t(x) = S_t(x/def - 1) \quad \text{if} \quad 0 \leq x \leq 1.5deft \]
\[S_t(x) = S_t(4x/t - 3) \quad \text{if} \quad 0.5t < x < t \]
\[S_r = Sr(1 - 4x/t) \quad \text{if} \quad 0 \leq x \leq 0.5t \]
\[S_r = Sr(4x/t - 3) \quad \text{if} \quad 0.5t < x < t \]
\[S_r = Sr(1 - 4x/t) \quad \text{if} \quad 0 \leq x \leq 0.5t \]
\[S_r = Sr(4x/t - 3) \quad \text{if} \quad 0.5t < x < t \]

The weight functions used in this study are:
1) Bueckner's weight function (Ref. 16):

 \[m(a,x) = \left[2\pi(a-x)\right]^{-0.5} \left[1 + m_1(a-x)\right]^{-0.5} \left[1 + m_2(a-x)\right]^{-0.5} \]

m_1 and m_2 are functions of the ratio of crack depth to strip width, a/w, and are given as (for 0 ≤ a/w ≤ 0.5):
\[m_1 = \frac{A_1}{a} + B_1 \quad \text{and} \quad m_2 = \frac{A_2}{a} \quad \text{and} \quad m_3 = \frac{A_3}{a} \]
where \(A_1 = 0.6147, B_1 = 17.1844, C_1 = 8.7822, A_2 = 0.2502, B_2 = 3.2899, C_2 = 70.0444 \)

2) Kanazawa's weight function (Ref. 8):

 \[G(c,y) = \frac{2.0}{\sin(\pi c/w)\sin(\pi c/w)} \]

where c = half crack length, w = plate width, and y = distance from plate center line

The equations used for modeling of residual stresses in this study are as follows:
1) In the as-welded condition:

 \[
 S_t(x) = Sr(1 - 4x/t) \quad \text{if} \quad 0 \leq x \leq 0.5t \\
 S_t(x) = Sr(4x/t - 3) \quad \text{if} \quad 0.5t < x < t \\
 \]
2) In surface-treated condition:

 \[
 S_t(x) = Sr(x/def - 1) \quad \text{if} \quad 0 < x < 1.5def \\
 S_t(x) = Sr\left\{(t' - 0.75deft)^2/t'^2 - 1\right\} \quad \text{if} \quad 1.5deft < x < t \\
 \]

where t' = t - 1.5def

\[Sr = \text{Sr} \]

The weight functions used in this study are:
1) Bueckner's weight function (Ref. 16):

 \[m(a,x) = \left[2\pi(a-x)\right]^{-0.5} \left[1 + m_1(a-x)\right]^{-0.5} \left[1 + m_2(a-x)\right]^{-0.5} \]

m_1 and m_2 are functions of the ratio of crack depth to strip width, a/w, and are given as (for 0 ≤ a/w ≤ 0.5):
\[m_1 = \frac{A_1}{a} + B_1 \quad \text{and} \quad m_2 = \frac{A_2}{a} \quad \text{and} \quad m_3 = \frac{A_3}{a} \]
where \(A_1 = 0.6147, B_1 = 17.1844, C_1 = 8.7822, A_2 = 0.2502, B_2 = 3.2899, C_2 = 70.0444 \)

2) Kanazawa's weight function (Ref. 8):

 \[G(c,y) = \frac{2.0}{\sin(\pi c/w)\sin(\pi c/w)} \]

where c = half crack length, w = plate width, and y = distance from plate center line

The local stress distribution induced by weld geometry obtained from FEA and curve fitting are:
\[S_t(x)/S = (1.5521 + 3.6887x + 0.7386x^2)/(1 + 4.867x + 0.4952x^2) \]
\[S_r(y)/S = 1.5521 \quad \text{for} \quad x = 0, \quad \text{for} \quad t = 6.35 \text{mm}, \theta = 30 \text{deg} \quad \text{and} \quad r = 1 \text{mm} \]