Creep Crack Growth Properties of Type 308 Austenitic Stainless Steel Weld Metals

The creep crack growth rate of the high-Bi-content flux cored arc weld metal was investigated.

BY S. KONOSU, A. HASHIMOTO, H. MASHIBA, M. TAKESHIMA AND T. OHTSUKA

ABSTRACT. Using Type 308 austenitic stainless steel weld metal made by the SMAW and FCAW processes, creep tests and creep crack growth tests were carried out at a temperature of 650°C. Creep crack growth rate tests were conducted using CT-type specimens and the data derived were arranged according to parameter C*. With regard to the flux cored arc weld metal, Bi₂O₃ (melting point 820°C) was intentionally added to the flux for easy slag peeling and enhanced weldability. The bismuth segregated (segregation depth approximately 15 Å) at the grain boundaries and, due to the presence of this bismuth, fracturing occurred intergranularly, with marked reduction in creep ductility. Further, the creep crack growth rate of the flux cored arc weld metal, which contained large amounts of bismuth, was exceedingly rapid compared with that of SMA and FCA weld metal not containing bismuth. Bismuth that has segregated at the grain boundaries is extremely harmful with respect to creep ductility and creep crack growth properties.

Introduction

Flux cored arc welding (FCAW) is being adopted with increasing frequency, with the aim of achieving enhanced efficiency in the welding of austenitic stainless steel pipes for high-temperature service (SUS 304 stainless steel, operating temperature approximately 650–750°C). However, there have been numerous reports (Ref. 1) of cases where intergranular cracking has been found after short-term use of welded joints made by the FCAW process. Some of the reasons for this cracking are believed to be as follows:

1) Hot cracks are caused by internal stresses that develop after solidification and during cooling from an elevated temperature in the welding process.

2) Creep crack growth rate test of the high-Bi-content flux cored arc weld metal, SUS304H base materials of 22-mm plate thickness (0.05%C, 18.2%Cr, 8.0%Ni) were butt joint welded. The welding process and bismuth content of the weld metal were varied to produce three types of samples. The welded joint sample with a low bismuth content made by the FCAW process was designated Sample NF. The welded joint with a high bismuth content and low C content made by the FCAW process was called Sample NFB and the low bismuth welded joint made by the SMAW process, Sample NS. Sample NS was added to determine whether the difference in welding process due to the noninclusion of Bi would have any influence on creep properties.

Table 1 gives the welding conditions of the NF, NFB and NS materials. DW-308H filler metal with a core diameter of 1.2 mm was used for Sample NF, FCW308LT of 1.2-mm core diameter for Sample NFB and WEL308HTS of 4.0-mm core diameter for Sample NS. Table 2 gives the chemical compositions of the weld metals of the NF, NFB and NS materials. Although all the weld metals are of Type 308 composition, the carbon content of the NF and NS materials exceeds 0.04%, while the carbon content of the NFB material is 0.03%. Furthermore, while the room temperature tensile stress of the welded joints and the minimum specified tensile stress of the base metal for SUS304 at JIS standard are indicated in the table, the tensile stresses of the welded joints exceeded the minimum specified tensile stress of the base metal.

There is no JIS standard for filler metals to weld Type 304H stainless steel, and...
Table 1 — Welding Conditions for the NF, NFB and NS Materials

<table>
<thead>
<tr>
<th>Sample</th>
<th>Welding Procedure</th>
<th>Filler Metal</th>
<th>Shield Gas</th>
<th>Electrode Diameter (mm)</th>
<th>Number of Layers</th>
<th>Current (A)</th>
<th>Voltage (V)</th>
<th>Welding Speed (cm/min)</th>
<th>Interpass Temperature (°C)</th>
<th>Heat Input (J/lcm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF</td>
<td>FCAW</td>
<td>Type 308</td>
<td>Ar (80%) + CO₂ (20%)</td>
<td>1.2</td>
<td>9</td>
<td>170-200</td>
<td>27-28</td>
<td>20.5-36.8</td>
<td>65-140</td>
<td>9400-15,200</td>
</tr>
<tr>
<td>NFB</td>
<td>FCAW</td>
<td>Type 308L</td>
<td>Ar (80%) + CO₂ (20%)</td>
<td>1.2</td>
<td>8</td>
<td>210-220</td>
<td>30-32</td>
<td>25.0-35.3</td>
<td>70-145</td>
<td>11,200-16,100</td>
</tr>
<tr>
<td>NS</td>
<td>SMAW</td>
<td>Type 308H</td>
<td>—</td>
<td>4.0</td>
<td>14</td>
<td>140-150</td>
<td>23-25</td>
<td>13.4-19.2</td>
<td>50-140</td>
<td>9600-15,600</td>
</tr>
</tbody>
</table>

Table 2 — Chemical Compositions of the Weld Metals

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>Si</th>
<th>Mn</th>
<th>P</th>
<th>S</th>
<th>Ni</th>
<th>Cr</th>
<th>Mo</th>
<th>O</th>
<th>N</th>
<th>Bi</th>
<th>δ-ferrite (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF (FCAW)</td>
<td>0.06</td>
<td>0.26</td>
<td>1.33</td>
<td>0.025</td>
<td>9.44</td>
<td>18.69</td>
<td>0.011</td>
<td>0.034</td>
<td>0.045</td>
<td>< 0.001</td>
<td>3.5</td>
<td>2.8</td>
</tr>
<tr>
<td>NFB (FCAW)</td>
<td>0.03</td>
<td>0.65</td>
<td>1.52</td>
<td>0.029</td>
<td>10.07</td>
<td>20.25</td>
<td>0.038</td>
<td>0.105</td>
<td>0.036</td>
<td>0.023</td>
<td>10.2</td>
<td>11.6</td>
</tr>
<tr>
<td>NS (SMAW)</td>
<td>0.059</td>
<td>0.25</td>
<td>1.83</td>
<td>0.013</td>
<td>9.74</td>
<td>19.6</td>
<td>0.028</td>
<td>0.068</td>
<td>0.03</td>
<td>< 0.001</td>
<td>4.7</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Table 3 — Initial Conditions for the Creep Crack Growth Tests

<table>
<thead>
<tr>
<th>Material</th>
<th>Specimen No.</th>
<th>Initial Crack Length (mm)</th>
<th>Load (kN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NF</td>
<td>FC-1</td>
<td>0.5</td>
<td>3.06</td>
</tr>
<tr>
<td>NFB</td>
<td>FBC-2</td>
<td>0.5</td>
<td>1.96</td>
</tr>
<tr>
<td>NS</td>
<td>SC-1</td>
<td>0.5</td>
<td>1.47</td>
</tr>
<tr>
<td>NS</td>
<td>SC-2</td>
<td>0.5</td>
<td>3.55</td>
</tr>
</tbody>
</table>

While AWS has standards for covered electrodes and solid wires to weld stainless steel for high-temperature applications, it has no standards for flux cored wires. Consequently, there have been reports (Ref. 1) of instances where FCAW308L has been used as a filler metal to weld Type 304H steel, as in the case of the NFB material.

According to welding qualification standards (ANSI/AWS D1.1 [Ref. 2], ANSI/ASME B31.3 [Ref. 3] and ASME Sec. IX [Ref. 4]), the requirements for the test results are as follows: 1) The tensile stress at room temperature shall be no less than the minimum of the specified tensile range of the base metal used. 2) The convex surface of the bend specimen shall contain no discontinuities.

Therefore, Type 304 stainless steel has been added to the flux intentionally to facilitate slag removal and to enhance welding operability.

Figure 1 shows the microstructures of the weld metals of the NF, NFB and NS materials at points near the center of thickness. While these are all standard dendritic structures, as can be inferred by using the Schaeffler diagram from among the chemical compositions given in Table 2, it was found that the NFB material contained large amounts of delta ferrite.

As for micro-Vickers Hardness (4.9 N), the hardness of the NFB material, containing the least amount of C, was Hv = 200-220, which was only slightly lower than the hardness of the NF and NS materials (Hv = 200-240).

Experimental Method

Unnotched creep test specimens having a parallel portion of 6.0 mm in diameter and oriented perpendicularly with respect to the weld interface so that the weld metal would be located in the parallel portion, as shown in Fig. 2, were taken from the NF, NFB and NS materials at positions nearest to the upper surface and subjected to creep tests at a test temperature of 650°C. Observations were...
then made of the fracture surfaces with a scanning electron microscope. Also, a post-test NFB creep specimen was forcibly broken in a vacuum to reveal intergranular fracture surfaces that form within a test piece during creep tests and the elements segregating at the grain boundaries were investigated by carrying out Auger and electron probe microanalyzer (EPMA) analyses.

Additionally, CT-type test specimens with 20% side grooves, as shown in Fig. 3, were taken from weld metals at points near midthickness and subjected to creep crack growth tests at 650°C. A lever-type dead-load test machine was used to perform the tests, of which initial conditions are given in Table 3. Crack length during testing was found by inputting a constant DC current (10 A) from the top and bottom ends of the test specimen, as shown schematically in Fig. 4, measuring the potential drop between points on each side of the crack and converting this to crack length by applying the Johnson's formula given below (Ref. 5). Load line deflection was found by measuring the pull-rod displacement of the test specimen.

\[\frac{a}{W} = \frac{b/n+1}{\cos V_{0}/V_{r}} \left[1 - \frac{a}{2W} \right] \left[1 + \frac{a}{2W} \right] + 1 \]

where, \(P = \text{load (N)} \), \(V_{c} = \text{load deflection rate (mm/hr)} \), \(b_{c} = \text{net thickness of specimen (mm)} \), \(n = \text{creep exponent in the secondary creep hardening equation} \).

Results and Discussions

Creep Tests

The results of the creep tests are in Table 4, which gives the relevant applied stress, rupture time, fracture ductility (elongation), and reduction of area, together with the secondary creep rate. Figure 5 shows the relationship between secondary creep rate and applied stress. For the same value of applied stress, secondary creep rate was fastest for the NFB material, which contained the least carbon, followed by the NS material and NF material, in that order.

The dependence of secondary creep rate on applied stress is expressed by Norton's law as follows:

\[\frac{de}{dt} = k \sigma^{n} \]

Table 4 — Creep Test Results

<table>
<thead>
<tr>
<th>Sample</th>
<th>Specimen No.</th>
<th>Applied Stress (\sigma) (MPa)</th>
<th>Time to Failure (t_{f}) (h)</th>
<th>Elongation (\varepsilon_{f}) (%)</th>
<th>R.A. (%)</th>
<th>Secondary Creep Rate (\dot{\epsilon}) (h(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>NS</td>
<td>NS-1</td>
<td>152</td>
<td>307.3</td>
<td>20.7</td>
<td>45.3</td>
<td>7.59 \times 10^{-5}</td>
</tr>
<tr>
<td></td>
<td>NS-3</td>
<td>160</td>
<td>54.5</td>
<td>22.2</td>
<td>60.5</td>
<td>2.10 \times 10^{-4}</td>
</tr>
<tr>
<td>NF</td>
<td>NF-1</td>
<td>156</td>
<td>307.3</td>
<td>20.7</td>
<td>45.3</td>
<td>7.59 \times 10^{-5}</td>
</tr>
<tr>
<td></td>
<td>NF-2</td>
<td>170</td>
<td>42.2</td>
<td>32.2</td>
<td>63.7</td>
<td>1.46 \times 10^{-5}</td>
</tr>
<tr>
<td></td>
<td>NF-3</td>
<td>175</td>
<td>16.6</td>
<td>32.0</td>
<td>68.1</td>
<td>5.50 \times 10^{-1}</td>
</tr>
<tr>
<td></td>
<td>NF-4</td>
<td>145</td>
<td>164.2</td>
<td>33.9</td>
<td>64.0</td>
<td>4.17 \times 10^{-4}</td>
</tr>
<tr>
<td>NFB</td>
<td>NFB-1</td>
<td>152</td>
<td>27.1</td>
<td>6.5</td>
<td>11.2</td>
<td>1.17 \times 10^{-1}</td>
</tr>
<tr>
<td></td>
<td>NFB-2</td>
<td>120</td>
<td>152.9</td>
<td>4.5</td>
<td>5.0</td>
<td>7.58 \times 10^{-4}</td>
</tr>
<tr>
<td></td>
<td>NFB-3</td>
<td>110</td>
<td>96.6</td>
<td>1.8</td>
<td>5.3</td>
<td>9.47 \times 10^{-1}</td>
</tr>
<tr>
<td></td>
<td>NFB-4</td>
<td>90</td>
<td>403.7</td>
<td>1.6</td>
<td>3.2</td>
<td>2.52 \times 10^{-4}</td>
</tr>
<tr>
<td></td>
<td>NFB-6</td>
<td>100</td>
<td>219.7</td>
<td>2.0</td>
<td>3.8</td>
<td>8.03 \times 10^{-1}</td>
</tr>
<tr>
<td></td>
<td>NFB-7</td>
<td>152</td>
<td>183.6</td>
<td>23.1</td>
<td>54.4</td>
<td>2.10 \times 10^{-4}</td>
</tr>
<tr>
<td></td>
<td>NFB-8</td>
<td>160</td>
<td>54.5</td>
<td>22.2</td>
<td>60.5</td>
<td>2.10 \times 10^{-4}</td>
</tr>
<tr>
<td></td>
<td>NFB-9</td>
<td>140</td>
<td>214.0</td>
<td>24.7</td>
<td>60.0</td>
<td>1.57 \times 10^{-4}</td>
</tr>
</tbody>
</table>
where \(k \) and \(n \) are constants whose values were obtained from the results of experiments as shown in Fig. 5.

Sample NF: \(k = 8.17 \times 10^{-9} \), \(n = 15.38 \)
Sample NFB: \(k = 3.71 \times 10^{-9} \), \(n = 9.88 \)
Sample NS: \(k = 4.32 \times 10^{-9} \), \(n = 13.26 \)

Figure 6 gives the creep failure properties. Also shown for comparison purposes are the creep failure properties at 650°C of SUS308H stainless steel weld joints made by the shielded metal arc, submerged arc and gas tungsten arc welding processes as given in the Report on the Mechanical Properties of Metals at Elevated Temperatures, Vol. V (Ref. 12), put out by the Iron and Steel Institute of Japan (ISIJ). Creep strength and elongation are about the same for both the NS and NF materials, which, furthermore, possess the same properties as those mentioned in ISIJ's published data. On the other hand, creep strength and elongation values were both low for the NFB material.

Namely, while creep ductility was large for the low-Bi-content NS and NF materials regardless of the different welding processes (approximately 25% at creep rupture time of about 100 h), it was extremely low for the high-Bi-content NFB material (approximately 4% at creep rupture time of about 100 h). While the carbon content (0.03%) of the NFB material was lower than that of the other materials, as a reduced carbon content generally causes a decrease in creep-rupture strength and an increase in creep ductility (Ref. 13). It is not considered that the decrease in creep ductility of the NFB material was influenced by carbon content. Furthermore, as the low carbon content (0.04%) weld metal indicated as ISIJ data in the figure has a fracture elongation of about 30% at a rupture time of approximately 100 h, it, too, possesses adequate ductility.

The microscopic structure of a cross section near the fracture surface and SEM fractographs after creep tests are shown in Fig. 7. Unlike the NS and NF materials, cracking in the NFB material propagated mainly along the grain boundaries. Compared with the other two welds, the NFB material contains large amounts of Si and O, as shown in Table 2. Most of the Si and O are believed to be dispersed as fine particles within the grains, in the form of \(\text{SiO}_2 \) and \(\text{Bi}_2\text{O}_3 \). As a result, grain strength increases and there is a possibility of this being the cause of the decrease in creep ductility of the NFB material. However, the hardness of the NFB material is not great compared to that of the other two welds and its influence, if any, is not considered to be very large.

On the other hand, Auger and EPMA analyses were performed on postcreep-test specimens (NFB-6). As a result of conducting EPMA analyses of the fracture surfaces of forcibly induced grain boundary cracking such as that which occurs during creep tests, it was verified that bismuth existed uniformly in the fracture. The results of Auger analyses performed on the grain boundaries are given in Fig. 8. Although bismuth segregation was evident at the grain boundaries of the fracture, as there was no sign of segregation of O, it is believed that bismuth (melting point 270°C) exists as a single substance at the grain boundaries. Figure 9 shows that the distribution of bismuth segregation in the depth direction as determined by argon ion sputtering (30 Å/min) is about 15 Å, indicating that bismuth segregation occurs within an extremely shallow depth at the grain boundaries.

Consequently, it is believed that the sharp drop in creep fracture elongation is due to bismuth segregation at the grain boundaries, as exemplified by the NFB material in Fig. 6.

Therefore, the use of FCAW fluxes containing large amounts of Bi (approximately 0.02%), as in the case of the NFB material, should be avoided with regard to Type 304 stainless welds intended for elevated temperature service.

As the Si contained in large quantities in the NFB material is an element that
strongly promotes the ferrite phase, the delta ferrite content of the NFB material is considerably larger than that of the other two welds, as shown in Table 2. Delta ferrite would decompose and produce a sigma phase during high-temperature service. This point should be clarified henceforth as it could constitute the cause of reduced creep ductility.

Creep Crack Growth Test

The relationship between crack length "a" obtained through creep crack growth tests and the changes in load-line deflections, Vc, in relation to time, is shown in Fig. 10A and B. The relationship, derived as a result of the foregoing, between creep crack growth rate \(\frac{da}{dt} \) \[[\text{mm/h}]\] and the parameter \(C^* \) \[[kJ/m^2h]\] given by Equation 2, is shown in Fig. 11. From this, the following empirical formula was obtained:

\[
\frac{da}{dt} = \alpha C^* \beta
\]

Sample NF: \(\alpha = 2.62 \times 10^{-2}, \beta = 0.93 \)
Sample NFB: \(\alpha = 5.87 \times 10^{-3}, \beta = 0.58 \)
Sample NS: \(\alpha = 8.90 \times 10^{-3}, \beta = 1.00 \)

Comparing the NF, NFB and NS materials in Fig. 11, creep crack growth rate is fastest in the NFB material, which contains large amounts of bismuth, followed by the NF and NS materials, respectively. Therefore, it is evident that the presence of bismuth that has segregated at the grain boundaries reduces creep ductility and speeds up creep crack growth rate.

Fig. 7 — Photomicrographs of vicinity of fracture surface and SEM photographs of fracture surface. A — Specimen NF-2 (\(\varepsilon_f = 32.2\% \)); B — specimen NFB-2 (\(\varepsilon_f = 4.5\% \)); C — specimen NS-3 (\(\varepsilon_f = 22.2\% \)).

Fig. 8 — Auger spectrum on intergranular fracture surface (creep specimen NFB-6; \(\varepsilon_f = 2.0\% \)).

Fig. 9 — Distribution of bismuth in depth direction from intergranular fracture surface.

Fig. 10 — Relationship between crack length "a" obtained through creep crack growth tests and the changes in load-line deflections, Vc, in relation to time.
Conclusions

Using Type 308 austenitic stainless steel weld metal made by the SMAW and FCAW processes, creep tests and creep crack growth tests were conducted at a temperature of 650°C. As a result, the following conclusions were made:

1) In the case of the FCA weld metal (which contained large amounts of bismuth, i.e., >0.02%), bismuth segregated as a single substance at the grain boundaries to a depth of about 15 Å. The presence of this bismuth led to intergranular fracturing and very marked reductions in creep fracture elongation.

2) There was no large difference in creep fracture elongation between the SMA and FCA weld metals, both of which contained no bismuth.

3) Creep crack growth rate of the high-Bi-content FCA weld metal was extremely rapid compared with that of the SMA and FCA weld metals containing no bismuth. In addition to adversely affecting creep elongation properties, the bismuth that segregated at the grain boundaries was also highly deleterious with regard to creep crack growth properties.

4) In view of the foregoing findings, the use of FCAW fluxes containing large amounts of Bi (approximately 0.02%) should be avoided in connection with Type 304 stainless steel welds intended for elevated temperature service.

References