Mechanical Properties of Plasma-Hardened 5% Chromium Tool Steel Deposited by Arc Welding

Plasma heat treatment promotes an increase in mechanical properties of deposited metal

BY L. K. LESHCHINSKY AND S. S. SAMOTUGIN

ABSTRACT. A complex technology is proposed to increase the mechanical properties of tools, dies and machine components for hot work of metals. The combination of hardfacing with a 5% chromium deposited metal and subsequent surface treatment using a highly concentrated plasma jet creates a hard surface along with resistance to breakage upon impact. The extremely fine-grained martensitic structure and relevant property gradients of the plasma-jet-hardened layer are almost identical to those treated by laser and electron beams.

Due to rapid phase recrystallization, the dissolution of primary carbides and the saturation of a solid solution with carbon and alloying elements develop. This leads to an increase in the degree of tetragonality, microdistortions of the crystal structure and to an increase in hardness without a decrease in dynamic fracture toughness because of the high dislocation density and mosaic block size reduction.

In its mechanical properties, martensitic 5% chromium (0.20%C) deposited metal after plasma hardening is close to chromium hot-work die steels, significantly surpassing them in dynamic fracture toughness.

Introduction

Hardfacing has traditionally been used to increase the performance of machine components, tools and spare parts. Through the proper selection of a hard-facing alloy and process, there is the possibility of achieving high service properties and of reducing the consumption of metal. For hardfacing of tools, dies and machine components used for hot deformation of metal, 5% chromium tool steel (5 Cr-0.5 Mo-0.15 V (0.20 C)) is widely used (Refs. 1, 2), but when compared to hot-work die steels, it needs improvement in mechanical properties and wear resistance.

A promising method for improving hardness and wear resistance, without the additional alloying of deposited metal, is a surface heat treatment using a highly concentrated heat source. The surface heat treatment of metals by a highly concentrated plasma jet similar to the heat sources used more extensively — laser and electron beams — makes it possible to carry out the power density 10^4-10^6 W/cm^2. Although not many experimental data reports are available on plasma hardening, experience with the application of plasma hardening indicates the cooling rates of the surface layers of steels, their structure and hardness are almost identical to those of the same materials hardened by laser and electron beams (Refs. 1, 3-5).

Recent studies of plasma surface treatment have shown high compressive residual stresses are formed in the quenched layer. These stresses rapidly decrease at the boundary of the quenched layer, change their sign and transfer to tensile stresses. The nonuniform distribution of the residual stresses in the depth of the heat-affected zone (HAZ) has a positive effect on the fracture toughness of hardened steels: cracks, caused by the external cooling, cease to grow at the boundary of the quenched layer.

According to the high cooling rates and quenched structure in the HAZ of 5% chromium deposited metal, reduction in impact strength and dynamic fracture toughness can be expected. This paper describes a study conducted to investigate the mechanical properties of plasma-hardened deposited metal. Experiments are described and discussed using a comparison of microstructures, fractographic pictures, X-ray diffraction studies and mechanical tests of deposited metal in the initial state and after plasma surface hardening. The theoretical analysis is also presented.

Experimental Procedure

Following multipass surfacing of 5 Cr-0.5 Mo-0.15 V (0.20 C) metal using the submerged arc welding process (Ref. 6), 10 x 10 x 55 mm Charpy specimens were sectioned, mounted and plasma hardened across one of the lateral faces — Fig. 1A. The specimens were machine finished, including notching of the very sharp, narrow notch in the middle of the HAZ — Fig. 1B. The sharpness of the notch tip promoted early crack initiation in the Charpy test; therefore, it simulated a natural crack well enough to provide a valid dynamic fracture toughness Klc test result (Refs. 7, 8). The tests were conducted at 20°C and ten specimens were tested for each structural constitution. When the Charpy test of each specimen was completed, its shape after fracture was checked to be sure the specimen was fractured in the plane-strain fracture toughness test.

The determination of Klc based on Charpy impact tests requires proof the specimen size used is satisfactory. The correlation criterion (Refs. 7, 8) pertains to a Charpy precracked specimen thickness of B ≥ 2.5 (Klc/σy). For 5 Cr-0.5 Mo-0.15 V (0.20 C) deposited metal, Klc = 30 MPa·m, σy = 900 MPa is the yield strength in tension. The calculation determines that when the left-hand member B is equal to 10 mm, it is about ten times greater than the right-hand member of this inequality.
Results and Discussion

A single pass of the plasma jet with extremely high heating and cooling rates forms a heat-affected zone of a circular segment with the maximum depth (up to 5 mm) in the center and gradual reduction of the depth to zero when approaching the edge (the width is up to 20 mm) (Refs. 1, 3–5). Table 1 shows the calculated values of the heating temperature and cooling rates in the HAZ of deposited metal 5 Cr-0.5 Mo-0.15 V (0.20 C) for distinct values of arc current I, travel speed of the torch V and plasma gas restriction orifice D of the plasma jet with a power of 30 kW generated by a non-transferred plasma torch with a sectional interelectrode insert. Calculated data were determined for the model of heating of a semi-infinite body by the Gaussian power density distribution of the moving heat source. Plasma surface hardening is carried out without HAZ overlapping (Fig. 2A) as well as with HAZ overlapping — Fig. 2B. The advantage of treatment without HAZ overlapping is the formation of a hardened layer with more uniform hardness and higher wear resistance on the surface when compared to the treatment with HAZ overlapping. At the same time, however, in the latter case, the depth of the hardened layer is more stable.

The structure of the HAZ of a plasma jet single-pass hardened surface is inhomogeneous. The quenched zone (marked 1 in Fig. 2) is placed directly below the hardened surface, where the rapidly increasing temperature is higher than Ac3. By increasing the distance to the surface, the transition region of the incomplete quenched structure (marked 2 in Fig. 2) develops according to the heating temperature range Ac3–Ac1. Below this zone, the metal of the initial structure remains unchanged (marked 3 in Fig. 2). The hardness values obtained in the quenching zone are relatively constant.
but drop steeply in the transition region to the values of the initial state of the deposited metal — Fig. 3. It shows the size of the transition zone is not more than 0.5 mm, so the boundary between the quenched and initial structures (Fig. 4) can be described as abrupt.

A narrow (about 2 mm) tempering zone is present in the quenched zone of the first pass of the plasma jet, where the second pass overlaps the first (Fig. 2B), and the temperature of reheating in this region is higher than Ac1 (marked 4 in Fig. 2). The microstructure of the different regions of the HAZ of the 5 Cr-0.5 Mo-0.15 V (0.20 C) deposited metal is shown in Fig. 5.

The initial structure of the 5 Cr-0.5 Mo-0.15 V (0.20 C) deposited metal consists of highly tempered lath martensite. At larger magnification it is possible to see the remaining stretched crystals, containing polygonal-shaped subgrains — Fig. 6A. Their dimensions do not exceed the thickness of the initial martensite crystals. Such a structure is formed in the process of surfacing of subsequent layers during the rapid cooling in the temperature range of the phase transformation. This results from rapid heat removal in the base metal, followed heating to the temperature of significant tempering, when the next layers of metal are deposited (Ref. 6). Lower carbon content in martensite (Table 2), when compared to the steel composition, testifies significant tempering takes place. At the same time, alloying with chromium, molybdenum, vanadium and silicon, accompanied by a lower rate of separation and growth of secondary carbides, protects some supersaturation of the α-solid solution (Ref. 11) because of a decrease in the rate of carbon diffusion and an increase in the strength of chemical bonds in the crystal lattice of the α-solid solution. The carbon content in the initial martensite remains high.

The initial structure of the deposited metal is characterized by the presence of a large quantity of carbides. The carbide phase is represented by cementite Fe3C and complex carbides Me23C6. The hardness of the deposited metal is HV 390-410 (Table 2) and, according to modern classification, it can be classified as a martensite-carbide steel.

Following surface heating with a highly concentrated plasma jet, natural cooling at a speed of the order of 10⁶°C/s leads to the formation of a hardened zone with a fine-grained martensite structure. The morphology of martensite at plasma quenching does not change. Mostly lath martensite is formed; however, it is significantly fine-grained — Fig. 6B. The average lath thickness, as visible in a thin-foil plane, is about 0.1 μm; the size of

![Fig. 4 — Microstructure of the 5 Cr-0.5 Mo-0.15 V (0.20 C) deposited metal at the boundary of the quenched and initial structure (400X).](image)

sheaves (packets) being up to 2 μm. Within the limits of one sheaf (packet), some adjoining subgrains are disoriented at angles of 2 to 3 deg, separated at the plane [110] with [111] by small-angle dislocation subboundaries (mostly twisted). Such a group can be presented as a monocristall with a layered dislocation structure, without full relaxation, because of high dislocation density inside each subgrain (Ref. 11). In addition to lath martensite, about 15% of the plate martensite is also detected in the structure of the hardened zone.

The constitution of the carbide phase after plasma hardening is changed fundamentally by the dissolution of cementite and of a large part (more than a half) of the special carbides. Additionally, the martensite matrix is saturated with carbon and alloying elements, all of which lead to an increase in parameters ρ, α/α, and Δα/α. The martensite structure in the plasma quenching zone is also significantly changed by the splitting of mosaic blocks and an increase in dislocation density to more than an order — Fig. 6C.

Such martensite may not be characterized on the radiographs as a structure of tetragonal crystal lattice featured in divided doubles. This is explained by the formation of an inhomogeneous tetragonal structure resulting from the partial decomposition (self-tempering) of martensite. Within the martensite laths, thin plate-like carbide particles (tertiary carbides) oriented in several directions, are precipitated — Fig. 6D. The submicroscopic dimensions of these carbides (several orders less than those of martensite laths), the remaining high carbon content in α-solid solution and the remaining parameters α, C/α and Δα/α testify self-tempering of finely dispersed martensite in the plasma quenched zone is stopped at the initial stage. Martensite of this zone in its parameters is practically the same as the original martensite. Similar results had been received for laser surface hardening.

![Fig. 5 — Optical micrographs of the 5 Cr-0.5 Mo-0.15 V (0.20 C) deposited metal at the HAZ regions. A — At the quenched zone (marked 1 in Fig. 1); B — at the tempered zone with HAZ overlapping (marked 4 in Fig. 1); C — at the initial structure (marked 3 in Fig. 1) (550X).](image)
Fig. 6 — Electron micrographs of the structure of the 5 Cr-0.5 Mo-0.15 V (0.20 C) deposited metal. A — In the initial state (22,000X); B — martensite laths (marked L1 to L4) (18,000X); C — carbide phase in martensite (marked P) (32,000X); D — dislocations in martensite (marked S) (52,000X); E — retained austenite (marked R) and martensite (32,000X). B through E are after plasma hardening.

for steels of the same type of composition (Ref. 12, 13), as well as for plasma hardening of tool steels (Ref. 14, 15).

The retardation of martensite self-tempering during rapid hardening is caused by inhomogeneity of carbon distribution in α-solid solution, which is inherited from austenite in the areas of increased carbon content (related to the average carbon content in the initial state of deposited metal). These areas are more stable against the decomposition. Another confirmation of the retardation of self-tempering and the concentrated inhomogeneity of martensite is the appearance of a heavily degenerated singlet (002) in the X-ray structure analysis.

Supersaturation of a solid solution with carbon and alloying elements as a result of primary carbide dissolution promotes an increase in hardness of deposited metal and a steep increase in dislocation density with a simultaneous increase in strength and deformation ability. The remaining small special carbides and submicroscopic tertiary carbides in martensite crystals of the quenched zone cannot be regarded as a separate hardening phase, but only as a particular in the stimulation to self-harden the martensite phase. Therefore, the 5 Cr-0.5 Mo-0.15 V (0.20 C) deposited metal after plasma hardening should be classified as belonging not to the martensite-carbide class but strictly to the martensite class. Finely dispersed martensite can play the role of a matrix, as well as of a strengthening phase. Such a structure of the hardened metal has a higher level of mechanical properties as compared to the initial state — hardness, impact strength, dynamic fracture toughness (Table 2). In addition, heat resistance is increased: hardness around HV 500 remains while the heating temperature is raised up to 550°C. If stress-relief bulk tempering is used after hardfacing before plasma hardening, heat resistance can reach 570°C (Ref. 1).

The increased retained austenite content also promotes the improvement of mechanical properties of the hardened deposited metal, especially of dynamic fracture toughness. The γ-phase in the conditions of high heating and cooling rates, short exposure time during plasma surface hardening and inhomogeneity of the solid solution (diminishing of temperature range Ms-Mf), acquires a very fine-grained structure. Because retained austenite is located mainly in the interlayers between martensite laths (Fig. 6E), this makes it possible to regard such a structure as a layered quasi-composite, like the laser surface treatment of cast steel of similar composition (Ref. 12).

The special features of the phase and structural transformation of plasma surface hardening also influence the increasing impact strength and dynamic fracture toughness of 5 chromium deposited metal. The Charpy impact testing system allowed, in addition to the values of impact strength, the recording and identifying of various stages of the failure process, while measuring the impact velocity, etc. — Fig. 7. This is especially important when a complicated failure process develops for a specimen of hardened steel with the cross section of an abrupt boundary from the quenched (harder) structure to the initial (softer) structure. The failure process is initiated and extends within the hardened layer. However, at the boundary, it ceases to propagate. To continue the failure process of such a specimen, significantly more Charpy energy is necessary (Fig. 7B) when compared to the energy necessary for the failure of the specimen with a homogeneous structure — Fig. 7A. The data on impact strength (CVN = 48.0 J) and dynamic fracture toughness (K1c = 32.5 MPa m1/2) of the deposited metal after plasma surface hardening show the enhancement as compared to the results of the testing with a similar procedure for the same type of specimens of the bulk-hardened chromium hot-work die steel 5 Cr-1.7 Mo-0.32 V (0.33 C). In the latter case, CVN = 36.0 J and K1c = 25.3 MPa m1/2.

To obtain a better understanding of the failure micromechanism of plasma-hardened 5 Cr-0.5 Mo-0.15 V (0.20 C) deposited metal, a fractographic examination was carried out on the fracture surfaces of impact test specimens. The failure micromechanism of the deposited metal in the initial state is quasi-brittle, a combination of transcrysalline cleavage (dominant) + ductile microvoid coalescence — Fig. 8A. Plasma hardening
causes a qualitative change in the failure micromechanism, it converts to purely ductile microvoid coalescence — Fig. 8B. As the data on the mechanical properties of the deposited metal show (Table 2), after plasma heat treatment, an increase in hardness of the metal with extremely fine-grained martensite structure develops at the same time as an increase in impact strength and dynamic fracture toughness. This is the main advantage of the proposed complex technology, including hardfacing and subsequent plasma surface heat treatment. With traditional methods of tool and die steel hardening using a heat treatment, there is an increase in hardness usually with a decrease of impact strength and dynamic fracture toughness.

Two competing failure micromechanisms of 5% chromium (0.20% C) deposited metal in the initial state are performed — transcrysalline cleavage as well as ductile microvoid coalescence. These are conditional on structure inhomogeneity — the presence of relatively large grains (packets) of highly tempered martensite, large primary carbides and dispersed particles of the strengthening phase — primary and secondary carbides. Kottrell’s dislocation model is used to describe the micromechanism of failure by cleavage (Ref. 17). According to this model, simultaneous slippage of dislocations is carried out in two crossing planes. By an agglomeration at the point of joining, new dislocations appear. An agglomeration of dislocations of crossing planes occurs more easily than in a distinct plane due to the reduction of repulsion forces for dislocations with the same sign and their larger concentration at the top of an agglomeration. There is a stress concentration in the vicinity of this top that leads to the initiation of a brittle microcrack in the crystallographic plane (100).

Achieving a purely ductile micromechanism of failure of deposited metal in the plasma quenching zone causes the presence of submicroscopic particles of carbides in the finely dispersed martensite matrix and high dislocation density. To describe a micromechanism of dimple rupture of ductile metal, with precipitation of a dispersed strengthening phase, Yokobori’s dislocation model can be used (Ref. 17). According to this model, carbide particles and inclusions are the obstacles to the dislocation movement. They create the stress concentration areas, cause slippage of dislocations and develop dislocation cracks such as microcavities prior to the onset of the growing macrocrack. The failure is accompanied by macroductile deformation while the growth and merging of adjoining cavities take place. From a finite moment, the localized deformation of ligaments between cavities is increased until the ligaments break. The fragmentation and the character of distribution of the secondary phase particles determine the size of the microcavities. Microcavities can be seen on the fracture surface — Fig. 8B.

Table 1 — The Calculated Values of the Plasma Jet Heating Temperature and the Cooling Rates

<table>
<thead>
<tr>
<th>D, mm</th>
<th>I, A</th>
<th>V, mm/s</th>
<th>Heating temperature*, °C</th>
<th>Cooling rate*, 10^-2 °C/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>300</td>
<td>7.0</td>
<td>1012/796</td>
<td>5.40/0.36</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>9.0</td>
<td>1282/1011</td>
<td>9.12/0.87</td>
</tr>
<tr>
<td>4.0</td>
<td>300</td>
<td>7.0</td>
<td>802/574</td>
<td>4.25/0.38</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>9.0</td>
<td>663/467</td>
<td>3.16/0.24</td>
</tr>
</tbody>
</table>

The * in the numerator for the depth Z = 1 mm, in the denominator for Z = 3 mm.

<table>
<thead>
<tr>
<th>D, mm</th>
<th>I, A</th>
<th>V, mm/s</th>
<th>Heating temperature*, °C</th>
<th>Cooling rate*, 10^-2 °C/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>300</td>
<td>7.0</td>
<td>802/574</td>
<td>4.25/0.38</td>
</tr>
<tr>
<td></td>
<td>400</td>
<td>9.0</td>
<td>663/467</td>
<td>3.16/0.24</td>
</tr>
</tbody>
</table>

Table 2 — The Effect of Plasma Hardening on the Characteristics of 5Cr-0.5Mo-0.15V (0.20 C) Deposited Metal

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>In the initial state</th>
<th>After plasma hardening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity of retained austenite q, %</td>
<td>up to 2.0</td>
<td>7.2</td>
</tr>
<tr>
<td>Carbide phase</td>
<td>~10% Fe₃C</td>
<td>Traces Fe₃C</td>
</tr>
<tr>
<td>Martensite crystal lattice parameter α, Å</td>
<td>0.0027</td>
<td>0.0012</td>
</tr>
<tr>
<td>Carbon content in martensite, % of mass</td>
<td>0.147</td>
<td>0.195</td>
</tr>
<tr>
<td>Degree of tetragonality of martensite lattice c/a</td>
<td>1.0077</td>
<td>1.0109</td>
</tr>
<tr>
<td>Microdistortions of crystal lattice A₈</td>
<td>0.47</td>
<td>1.18</td>
</tr>
<tr>
<td>Dislocation density p 3 10⁶, m⁻¹</td>
<td>1.7</td>
<td>24.7</td>
</tr>
<tr>
<td>Mosaic block size (of coherent scattering areas) S x 10⁻³, m</td>
<td>1.57</td>
<td>0.43</td>
</tr>
<tr>
<td>Hardness HV</td>
<td>390-410</td>
<td>520-540</td>
</tr>
<tr>
<td>Impact strength CVN, J</td>
<td>42.0</td>
<td>48.0</td>
</tr>
<tr>
<td>Dynamic fracture toughness</td>
<td>28.2</td>
<td>32.5</td>
</tr>
<tr>
<td>Relative wear resistance</td>
<td>1.0</td>
<td>1.65</td>
</tr>
</tbody>
</table>

Fig. 7 — Load-time response for Charpy notched bar impact test of the 5 Cr-0.5 Mo-0.15 V (0.20 C) deposited metal. A — in the initial state; B — plasma hardened.
Conclusions

The results, based on the investigations, confirm the effect of surface hardening by a highly concentrated plasma jet on the structure and mechanical properties of 5 Cr-0.5 Mo-0.15 V (0.20 C) deposited metal validates the following conclusions:

- The structure of the deposited metal in the initial state is highly tempered lath martensite. The carbide phase is represented by cementite Fe₃C and special carbides Me₃C₆.

- Plasma heat treatment of the deposited metal leads to full phase recrystallization and rapid quenching with formation of a hardened layer of very finely dispersed martensite structure. Martensite morphology does not change; lath martensite is being formed. Self-tempering of martensite in the plasma quenched zone is stopped at the initial stage and its parameters are practically the same as the original martensite.

- During plasma hardening, the full dissolution of the cementite phase and of the major part of the special carbides takes place, which leads to additional saturation of the solid solution with carbon and alloying elements. As a result, there is an increase in the martensite crystal lattice parameter α, degree of tetragonality γ/α and microdistortions of the crystal lattice Δα/α. Hardness increases from HV 390-410 to HV 520-540. The sharp rise in dislocation density p and mosaic block size reduction S govern the simultaneous rise in hardness, impact strength CVN and dynamic fracture toughness KIC.

- The rise in the dynamic fracture toughness of the plasma-hardened deposited metal is caused by a qualitative alteration of the micromechanism of failure from transcrystalline cleavage (Kottrel's dislocation model) to ductile microvoid coalescence (Yokobori's dislocation model).

Acknowledgments

The authors are grateful to V. Goritsky, D. Khromov and E. Zarkhova for EM metallography, and to N. Solinikov, E. Lukhina, O. Novohatskaya, V. Velgovolskaya, S. Dinenhof and T. Kidtseva for their help in carrying out this work.

References

12. Molian, P. A. 1985. Structure and hardness of laser-processed Fe-0.2% C-5.5% Cr and Fe-0.2% C-10% Cr alloys. Journal of Material Science 20: 2903-2912.

Appendix: The Determination of Phase Constitution and Crystal Structure Parameters

The crystal structure of 5 Cr-0.5 Mo-0.15 V (0.20 C) deposited metal in the initial state and after plasma hardening described in this study was determined using X-ray diffraction analysis.

The martensite crystal lattice parameter α was calculated from the equation based on Bragg's law:

\[\lambda = 2\alpha \sin \theta / h + k + 1/2 \]

where \(\lambda \) is the X-ray wavelength (for Fe Kα radiation \(\lambda = 1.936 \AA \)); \(\alpha \) is the lattice spacing of martensite planes (h, k, l planes); h, k, l are the Miller indexes of the diffracted direction; 2θ is the angle of deflection of the crystallographic planes [110] and [220] (the angle was measured accurately). The structure factors were obtained from the experimental diffraction pattern and the result was determined by the extrapolation of parameters \(\alpha_{110} \) and \(\alpha_{220} \) to \(\alpha_{0} \).

The carbon content in the martensite \(\rho \) was calculated based on the interdoublet distance \(\Delta \theta \) using the calibration graphical chart of \(\Delta \theta = f(\rho) \).

The degree of tetragonality of the martensite lattice was obtained as \(c/\alpha = 1 + 0.0467\rho \).

The microdistortions of the crystal lattice were calculated from \(\Delta \alpha/\alpha = \beta_{\alpha} / 4 \tan \beta_{\alpha} \), where \(\beta \) is the interaxial angle.

The dislocation density \(\rho \) was determined from the following equation: \(\rho = 2.4 \beta_{\alpha}^{2} \times 10^{16} \), m⁻².