Intelligent Control of Pulsed GTAW with Filler Metal

The dynamic neural network model accurately predicted backside width and topside height and could be used for process control

BY G. J. ZHANG, S. B. CHEN, AND L. WU

ABSTRACT: This paper addresses intelligent control of weld shape for plates with varied root openings during pulsed GTAW with filler metal, and is a development from the work in Refs. 1-3. The newly developed double-sided visual image sensing system could acquire the front topside, back topside, and backside images of the weld pool simultaneously in the same frame. The root opening and the double-sided weld pool geometry parameters were extracted online. A neural network model was established to predict the backside width and topside height through welding parameters and topside shape parameters. Feasible intelligent control schemes were also investigated. In order to eliminate the effect of the root opening and stabilize both backside width and topside height, a double-variable controller was designed, in which the feedback control part regulates the pulse duty ratio to control backside width and, at the same time, the feed-forward control part adjusts the filler metal rate to achieve the desired topside height in order to compensate for the effects of the varying root openings.

Introduction

This paper studies weld shape quality control in pulsed gas tungsten arc welding (GTAW-P) with a filler metal, and is a development from the work in Refs. 1-3. The state of the art of weld shape quality control has been reviewed in detail in those papers. By summarizing Refs. 1-32, the following can be seen:

1. Although extensive research has been done to find feasible approaches for the adaptive control of the complicated welding process, more practical solutions are still strongly needed for different cases (Refs. 4-8).

2. Among the studied sensing methods, passive visual image sensing has proven to be a feasible and promising method (Refs. 9-25).

3. With regard to modeling and controlling the welding process, artificial intelligence methodology was thought to be a feasible tool for the complex nonlinear system (Refs. 26-28), and some studies have been done that showed promising results (Refs. 29-32).

4. Most research has centered on bead-on-plate and GTA welding of butt joints without a root opening and filler metal; welding with filler metal and a root opening has not been addressed adequately.

Unfortunately, in practical welding, variation in root opening is unavoidable and affects the resultant weld shape and quality. Especially when the root opening is too large, incision will occur and joining is not obtained.

Research on intelligent control of weld pool shape during pulsed GTAW at Harbin Institute of Technology has gone through three stages: bead-on-plate (Ref. 2), welding of butt joints without filler metal (Ref. 3), and welding of butt joints with filler metal (Ref. 1). The results of this research were published in a series of papers in the Welding Journal (Refs. 1-3).

As a continuation, this paper took into account the existence of the root opening and its effect on weld shape, and established an intelligent control system for weld shape quality during pulsed GTAW of butt joints with varied root openings. In this paper, first, a new double-sided imaging system for the weld zone was developed to acquire the front topside, back topside, and backside images of the weld pool simultaneously in the same frame. Second, a neural network model of the dynamic process was established to predict backside width and topside height through welding parameters and topside shape parameters. Finally, a double-variable composite intelligent controller was developed and studied.

Sensing System

The experimental system was the same as the one in Ref. 1; however, certain modifications were made.

First, an isolated gate bipolar transistor (IGBT) switch power source was used as the welding machine whose dynamic response time was less than 1 ms.

Second, in order to clearly view the root opening from the front of the weld pool, the wire was fed at 15 deg. deviating from the weld joint from the front. The wire was fed during the peak current period. The filling time was fixed at 300 ms; the filling amount was adjusted by regulating the feeding rate.

In order to sense the shape of the weld pool and the joint root opening, a new imaging light path was developed to acquire the front topside, back topside, and backside images of the weld pool simultaneously in the same frame.

This new light path system is shown in Fig. 1, and has been designed to guarantee the three weld pool images to be clearly and simultaneously formed on the same CCD camera.

In Fig. 1, O_XYZ is the workplate coordinate system. Point O is the center point of the weld pool image. The positive direction of axis X is the welding direction. The front topside imaging light path is composed of the reflecting mirrors M2 and M3, the back topside imaging light path consists of the reflecting mirrors M4 and M2, and the backside imaging light path is formed by the reflecting mirrors M5, M3, and M1.
Weld Pool Images

Experiments with groove welds in a butt joint with a root opening were done on low-carbon steel Q235B. The experiment conditions are tabulated in Table 1.

The waveform of the current is shown in Fig. 2. The images were separately acquired during the peak and base current periods to study for the optimal imaging time and imaging current.

Figure 3 shows the double side pool images sensed under the above experimental conditions. Each image consists of three sub-images acquired from the three different directions as illustrated in Fig. 3F.

Experimental observation and study suggests the following optimal imaging time: the front topside pool image be sampled 60 ms before the end of the pulse peak current to extract the root opening; the back topside image and backside image be acquired 100 ms after the start of the base current to obtain the feedback for intelligent control of the backside width and topside height.

As shown in Ref. 1, the topside length \(L_p \), maximum width \(W_p \), and half-length ratio \(R_{tip} \) and topside height \(H_t \) can be used as the characteristic parameters to describe the shape and size of the topside weld pool. The backside pool is specified by the maximum width \(W_b \) and length \(L_p \).

A real-time image processing algorithm has been developed to extract the root opening, and the topside and backside weld pool shape parameters.

Neural Network Modeling

The backside width and the topside height are the key variables that determine the weld shape. Unfortunately, the topside height could not be directly extracted and the backside width could not be directly sensed either in most cases. So, a dynamic process model should be established to predict the backside width and the topside height by the topside pool geometry parameters and the welding parameters. Neural network modeling is an appropriate modeling method for the complex process.

Model Structure

Figure 4 shows the architecture of the model for predicting the backside width and topside height (BWHDNNM). The model inputs were the welding parameters (peak current \(I_p \), pulse duty ratio \(\delta \), welding speed \(V_w \), filler rate \(V_f \), root opening \(g \), topside pool shape parameters \(L_p, W_p, R_{tip} \), and their history values at two former pulses, a total of 24 numbers. The model outputs were the current backside width and topside height. The number of elements in the hidden layer was set at 10 by a trial and error procedure. S function was chosen as the transfer function of the neural element.

Experiment for the Training Data

Experiments were carried out on 2-mm-thick low-carbon steel plates for pulsed GTAW of butt joints with a root opening. The basic experiment conditions are shown in Table 1. To excite all the characteristics of the dynamic welding process, the inputs were designed with white noise signals because of their characteristics of widespread spectrum and noncorrelation on time. Through experiments, the following welding parameters were chosen as the operating point under which the satisfactory weld bead geometry could be obtained. \(I_p = 135 \text{ A}, \delta = 50\%, \ V_w = 2.5 \text{ mm/s}, \ V_f = 5 \text{ cm/s} \). The range of the inputs were set as follows: \(\Delta I_p = \pm 20 \text{ A}, \Delta \delta = \pm 10\%, \Delta V_w = \pm 0.5 \text{ mm/s}, \Delta V_f = \pm 4 \text{ cm/s} \). The corresponding varying steps were 5 A, 5%, 0.17 mm/s, and 1 cm/s. In welding with a root opening, a 1-mm root opening was preset when the workplate was clamped. Due to heat distortion of the plate, the root opening varied during welding, as seen in Fig. 5A.

The number of the welding pulse current on every work plate was 90, and 30 groups of experiments were conducted, 10 groups of which were on workplates without a root opening, the other 20 groups were with a root opening. The root opening \(g \) and the weld pool two-dimensional plate geometry parameters \(W_p, L_p, R_{tip}, W_b, W_t \) were sensed online by the previously mentioned developed imaging system and image processing algorithm. The experiment results are shown in Fig. 5. The topside height \(H_t \) was measured off-line. In pulsed welding, there are ripples on the
surface of the weld, so the weld pool boundary of every pulse can be easily identified. When measured, the welded workpiece was fixed on the movable platform of the structured light height measurement system.

Twenty-five hundred sample data pairs were obtained.

Training and Testing

The training of the previously mentioned neural networks was performed using a self-developed algorithm that used the Levenberg-Marquardt rule as the learning algorithm. The first 2200 of the entire 2500 sample data were taken as training data, the following 100 were used as validation data, and the last 200 data were used as testing data.

Test results of the BWHDNNM model are shown in Fig. 6. Error statistical data showed the mean errors of the backside width and topside height between the predicted and the measured were -0.0146 and 0.0613 mm, respectively, and the relative mean square errors were 4.63 and 6.7%, respectively. The testing results verified the feasibility of the developed models.

Intelligent Control for the Weld Shape

Two intelligent control systems, the single variable and double variable, were developed.

Single-Variable Self-learning Fuzzy Neural Network Control

During the design of the general fuzzy logic controller, the difficulty was the decision of the membership functions and the fuzzy rules. Fortunately, the fuzzy system can be expressed by an equivalence neural network; the neural network is no longer a black box, its every layer and every node are related to a part of the fuzzy system, and all nodes and weights have certain physical meanings that correspond to the membership functions and inference process. So, the membership functions and inference rules can be decoded through the learning of the neural network, which makes the fuzzy controller have the ability of self-learning and self-adaptation.

The structure of the fuzzy neural network, fuzzy inference process, and learning algorithm can be seen in Ref. 3.

Control System

The fuzzy neural network controller (FNNC) for the backside width is shown in Fig. 7. MS was the measuring system for detecting the topside shape parameters TSP (L, W, and R) and the welding parameters WP, such as welding current, travel speed, etc. These detected parameters were input into the ANN predicting model BWHDNNM, and the predicted backside width W was generated by BWHDNNM. The error e between the given backside width W and the feedback backside width W was input into the FNNC. The FNNC regulated the controlling variable, namely the pulse duty ratio δ, to keep the backside width stable.

Simulation

Simulations of the FNNC performance were conducted in four cases. W was the
Fig. 5 — The measured shape parameters of the weld pool. A — Root opening; B — L_r; C — W_b; D — R_{ik}; E — H_z; F — W_f.

Fig. 6 — Test results of BWHDNNM.

Fig. 7 — Schematic diagram of FNNC closed-loop control system.

Control Experiment

To verify the performance of the FNNC, experiments on butt joint welds with filler metal were conducted on varied heat-sink workplates and varied root opening workplates. The size of the varied root opening pieces is shown in Fig. 9. The controlled variable of the backside width was set as 5 mm. The minimum regulating unit of pulse duty ratio was 1%. The control functioned from pulse 7.

In order to avoid the clamping condition's effect on the results, the clamping plates were used instead of the clamping block. Each of the clamping plates has the same length as the workplates. The two ends of the workplate were joined by spot weld.

The control results are shown in Figs. 10-12. Figure 10 shows the variation in shape parameters. Figure 11 shows the double-sided pool images. The photographs in Fig. 12 show the surfaces of the resultant weld.

Statistic results show the maximum error between the real value and the given value was 0.39 mm, the mean error was 0.014 mm, and the root mean square was 0.14 mm. The real backside width was maintained around the given value of 5 mm, but the topside surface sank at the root opening.

Double-Variable Composite Controller

The FNNC experiment described in the previous section, in which root opening was considered as a disturbance, showed that root opening was a very important factor to weld shaping. Regulating pulse duty ratio only could keep backside width stable, but the topside surface sank at the root opening. In addition, a large root opening can easily induce cutting. So the right operation was to regulate the filler rate online by the size of the root opening, which could achieve the desired positive reinforcement.
Parameter Preset Feed-Forward Control

In this experiment system, root opening can be measured online, so it is possible to preset the filler rate by the size of the root opening. The key question was to decide what rate should be preset.

Choose a working point \(I_0 = 130 \, \text{A}, \, t_p = 50\% , \, V_w = 2.5 \, \text{mm/s}, \, V_f = 5 \, \text{cm/s} \) at which the topside height was zero in the case of welding with no root opening. Then, the welding with varied root openings was done. At the root opening, the filler rate was stepped up until the topside height became zero. The increment of the filler rate was regarded as compensation value.

In order to reduce the experiment workload, the simulation experiment was carried out to get the initial compensation value at different root openings. Figure 13 shows the topside height control principle used in the simulation experiment.

The compensation value obtained from the simulation was revised by a real welding experiment. Table 2 shows the compensation value finally decided upon for the filler rate at different root openings.

Table 2 — The Compensating Value of Filler Rate for Different Root Openings

<table>
<thead>
<tr>
<th>Root opening (mm)</th>
<th>(\Delta V_f) (cm/s)</th>
<th>(V_f) (cm/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.2</td>
<td>(\geq 2)</td>
</tr>
<tr>
<td>0.2</td>
<td>0.4</td>
<td>(\geq 3)</td>
</tr>
<tr>
<td>0.3</td>
<td>0.7</td>
<td>(\geq 4)</td>
</tr>
<tr>
<td>0.4</td>
<td>1</td>
<td>(\geq 4)</td>
</tr>
<tr>
<td>0.5</td>
<td>1.5</td>
<td>(\geq 5)</td>
</tr>
<tr>
<td>0.6</td>
<td>2</td>
<td>(\geq 6)</td>
</tr>
<tr>
<td>0.7</td>
<td>2.4</td>
<td>(\geq 7)</td>
</tr>
<tr>
<td>0.8</td>
<td>2.8</td>
<td>(\geq 7)</td>
</tr>
<tr>
<td>0.9</td>
<td>3.1</td>
<td>(\geq 7)</td>
</tr>
<tr>
<td>1</td>
<td>3.5</td>
<td>(\geq 7)</td>
</tr>
</tbody>
</table>

The preset filler rate had a minimum in order to avoid cutting at different root openings, which is shown in the third row of Table 2.

Double-Variable Composite Control

As known from the previously described control experiment, in the case of varied root openings, the single-variable feedback controller could keep the backside width stable by regulating the pulse duty ratio, but the topside height was not constant. Especially at a large root opening, the topside surface sank severely. On the other hand, the feed-forward control strategy of presetting the filler rate according to size of the root opening could eliminate the effect of the root opening on the topside height, but could not guarantee backside width uniformity. So a double-variable composite controller should be designed in order to stabilize both backside width and topside height by simultaneously regulating pulse duty ratio and filler rate. In the designed composite controller, the feedback control part regulated pulse duty ratio to stabilize the backside width, while at the same time, the feed-forward control part adjusted the filler rate to eliminate topside caving due to root opening. The control principle is shown in Fig. 14.

In order to validate the designed dou-
ble-variable composite controller, a real control experiment was done at the varied root opening workplate shown in Fig. 15. The desired output of the backside width was set at 5 mm. Figure 16 shows the regulating curve of the control process. The welded workplate is shown in Fig. 17.

Experiment results showed the real backside weld width W_b maintained at 5.0 mm. By statistic, the maximum error between W_b and $W_{b_{sel}}$ was 0.32 mm, the average error was 0.02 mm, and the root-mean-square error was 0.18 mm. The average topside height was -0.018 mm, the root-mean-square error was 0.08 mm, and the maximum error was 0.09 mm. As seen from the control results, in the case of varied root openings, the double-variable composite controller not only could guarantee the backside width uniformity, but also could guarantee the topside height had no significant difference when the root opening varied. The control results of the double-variable composite controller could satisfy the requirement for weld shaping at most applications. It was seen from the control process that the pulse duty ratio was regulated at a smaller range, compared to Fig. 10, due to the compensation of the preset filler metal rate to the root opening.

Conclusions

With the existence of root opening, the intelligent techniques for weld shape control were investigated and the following conclusions were obtained.

1. The newly developed multiorientation visual sensing system has realized simultaneous image sensing of front topside, back topside, and backside weld pool in a frame during pulsed GTAW with filler metal. The sampled images had acceptable resolution and contrast, and provided information about the dynamic weld pool.

2. The constructed dynamic neural net-
work model could accurately predict the backside width and topside height through welding parameters and topside shape parameters. The validating experiment results proved that the model had high accuracy and could be used in process control.

3. The experiment results of the developed SISO self-learning fuzzy neural network controller showed the following:

- For the welding process with time-varying conditions, the intelligent controller with the function of online self-learning had adequate adaptive capability, and could achieve satisfactory control performance under different conditions.
- For welding with varied root openings, the backside width was easily kept stable. However, the topside height was not controlled; when the root opening was large, the topside surface sank severely. Hence, for large root openings, a double-variable controller should be considered.

4. The designed double-variable composite controller can stabilize both backside width and topside height by simultaneously adjusting pulse duty ratio and filler rate.

Acknowledgment

This work was supported by the National Natural Science Foundation of China (No. 59635160) and Visiting Scholar Foundation of Key Laboratory in China University.

References

Call for Papers – Failure Analysis in Welding and Joining
Materials Science & technology 2005

The session chairs of MS&T 2005 are actively seeking abstracts related to the failure analysis of welded, brazed, or soldered joints. Presentations will be 25 minutes long. Although publication is not required, an emphasis is placed on work demonstrating the depth and quality suitable for peer review and publication in the Journal of Failure Analysis and Prevention.

Abstracts to be considered must be 150 words or less, but shall provide sufficient detail for a fair evaluation of the work to be presented. Interested presenters must submit their abstracts online at http://cmsplus.tms.org prior to March 15, 2005.

Presenters are responsible for all costs associated with their participation, including a registration fee. We ask that authors have approval to present their work at the conference before submitting it for consideration.

For inquiries or more information, please contact the session co-chairs: James Lane (jlane@atslab.com) or Tom Ackerson (ackerson@sri.org).