Stray Grain Formation and Solidification Cracking Susceptibility of Single Crystal Ni-Based Superalloy CMSX-4

Stray grain area fraction and cracking susceptibility were correlated to welding process and parameters

BY T. D. ANDERSON AND J. N. DUPONT

ABSTRACT

The stray grain formation behavior and susceptibility to solidification cracking in autogenous welds on single crystal alloy CMSX-4 have been investigated. Welds were prepared using the electron beam (EB) and gas tungsten arc welding (GTAW) processes. The stray grain area fraction and cracking susceptibility were determined and correlated to the processing parameters and process type. The stray grain content initially increased and then decreased with increasing travel speed. This effect is attributed to the complex effect of travel speed on the temperature gradient and growth rate and resulting amount of constitutional supercooling in the weld. The stray grain content decreased with decreasing weld power. In general, the amount of stray grains and resultant cracking susceptibility were observed to decrease by the use of low heat inputs. The stray grain content and cracking susceptibility of welds prepared with the GTA process was always higher than welds made with the EB process. This difference is attributed to differences in power density and temperature gradient, where the EB process produced a higher temperature gradient that reduced the amount of stray grains and resultant susceptibility to cracking. For the conditions evaluated in this work, EB welds produced at heat inputs below ~13 J/mm produced welds that were crack-free with stray grain contents < 5%.

Introduction

Nickel-based single crystal superalloys are used for turbine blades for their excellent creep resistance. These materials are very expensive as a result of the complex fabrication conditions required to maintain the single crystal structure during casting. Some blades must be scrapped after casting because the formation of defective “stray” grains (SG), while other blades may need to be replaced after finite service exposures due to damage associated with wear, fatigue, or creep. Thus, there is a need to develop reliable welding techniques in order to rejuvenate damaged blades or repair blades with casting defects. This involves the establishment of welding parameters that will avoid the formation of SG in the weld. The SG formation tendency is a strong function of the local solidification conditions, which are controlled by the welding parameters. Another type of welding defect that is commonly observed in this class of alloys is solidification cracks. Solidification cracks are commonly associated with SG formation, but the particular range of welding parameters over which cracking can occur is not typically well established. The complex relations between welding parameters, solidification parameters, resultant SG formation, and solidification cracking susceptibility make the development of reliable weld repair strategies difficult.

Stray Grain Development

Stray grain formation is known to be a result of constitutional supercooling (CS), which is controlled by temperature gradient (G) in the liquid directly ahead of the solid/liquid interface and the growth rate (V). Research has shown that a low G/V ratio will promote the nucleation of SG by introducing excessive liquid undercooling ahead of the solidifying columnar dendrite front (Ref. 1). There exists a wide range of G and V across the solidification interface of a weld pool. In a polycrystalline material, dendrite growth will generally be opposite to the direction of heat flow, so G and V are considered normal to the solid/liquid interface. For the case of a single crystal (SX) material, the growth directions are limited to one of the six crystallographic <100> easy growth vectors. The relevant G and V for SX solidification are those parallel to the local dendrite growth directions, G\text{\perp} and V\text{\perp}. These can be calculated using a geometric model (Refs. 2–4) if the weld pool shape and SX substrate orientation are known. The dendrite tip velocity V\text{\perp} is calculated with the relationship:

\[V_{\perp} = S \frac{\cos \theta}{\cos \psi} \] (1)

where S = travel speed, θ = the angle between the travel speed direction S and the interface normal, and ψ = the angle between the interface normal and the active dendrite growth direction.

Current approaches to predict SG formation in weld structures stem from models originally developed to describe the columnar-to-equiaxed transition (CET) in castings (Ref. 2). The model has been applied to the case of fusion welding, and the equation used to calculate the SG area

KEYWORDS

EB Process
GTAW Process
Cracking
Single Crystal
Stray Grains
Superalloy
fraction (ϕ) is given by (Ref. 3)

$$\phi = 1 - \exp \left[-4\pi N_0 \left(\frac{1}{3} \left(\frac{n+1}{G/V} \right)^{\frac{1}{3}} \right) \right]$$

where N_0 = the nuclei density and both a and n are material constants. The nuclei density is a critical factor because stray grains nucleate independently in the liquid. Estimates of N_0 have been made based on SG measurements (Ref. 3). The incidence of SG formation has also been related to the presence of a wide solidification temperature range, ΔT_s (Ref. 4).

Recent solidification studies of Alloy CMSX-4 suggest a solidification temperature range of $\sim 200^\circ$C (360°F) based on a Scheil analysis (Ref. 5). However, more detailed modeling has demonstrated that the Scheil model overestimates ΔT_s and the true value of ΔT_s for this alloy is about 80°C (Ref. 5).

Solidification Cracking

Weld solidification cracking in the fusion zone of Ni-based alloys has been the subject of considerable investigation and the mechanism is generally well understood. As is characteristic of weld solidification cracking in other systems, cracks form during the terminal stages of solidification when liquid films are distributed along solidification grain boundaries and, in some cases, interdendritic sites. At this stage, shrinkage strains across the partially solidified boundaries can become appreciable. If the terminal liquid is distributed along the boundaries as a continuous film, the strains cannot be accommodated and the boundaries separate to form a crack.

Susceptibility to weld solidification cracking is a function of both metallurgical factors and the level of local strain present at the end of solidification. In terms of metallurgical factors, it is well established that the solidification temperature range as well as the amount and distribution of the interfacial terminal liquid are the primary factors that control solidification cracking susceptibility of Ni-based alloys (Refs. 6–8). Solute redistribution plays an important role in solidification cracking as it affects the solidification temperature range and amount of terminal liquid.

The effect of the solidification temperature range can be understood in simplified terms by considering its influence on the size of the solid + liquid (mushy) zone. During welding, the mushy zone trails behind the liquid weld pool. It is this mushy region that is susceptible to cracking under the influence of shrinkage strain and external restraint. For a fixed temperature gradient in the mushy zone (constant processing parameters), alloys with relatively high solidification temperature ranges can be susceptible to cracking due to a rather large crack-susceptible mushy zone.

The actual distance a solidification crack propagates through the mushy zone depends on the distribution of terminal liquid that exists near the end of the solid + liquid region (Ref. 8) and the level of local strain present. When the amount of terminal liquid is moderate (typically between approximately 1 and 10 vol-% (Ref. 8)) and/or the surface tension is low, the liquid tends to wet the boundary and form a continuous film. This type of morphology is most detrimental as it interferes with the formation of solid/solid boundaries, thus reducing the ability of the material to accommodate strain. When the amount of terminal liquid is relatively high, (greater than approximately 10 vol-%), it can often flow into the cracks and provide a “crack healing” effect (Ref. 8).

Since solidification cracking in superalloys is primarily associated with grain boundaries, SX weld zones have typically been observed to crack when SG formation has introduced grain boundaries into the weld metal. The large ΔT_s combined with the relatively small grain boundary surface area make these areas especially susceptible to cracking. Moreover, the character of the grain boundary itself can contribute toward cracking susceptibility. High-angle boundaries are more likely to crack than low-angle boundaries due to the prolonged time interval that these boundaries require to coalesce (Ref. 9). While substrate preheating can be used to help reduce the restraint and possibly reduce cracking tendency (Ref. 10), it also reduces the overall G/V ratio in the weld zone, making a columnar-to-equiaxed transition (CET) far more likely to occur. The resultant nucleation and growth of equiaxed grains will significantly increase the solidification cracking susceptibility. Since solidification cracks have never been observed without SG, the avoidance of such cracks can be achieved by reducing or eliminating SG formation. Past studies (Ref. 11) have shown that weld parameters that produce higher G/V ratios can effectively eliminate solidification cracking.

The development and application of heat/flow and solidification modeling techniques for predicting SG formation in welds has recently been described in a companion paper (Ref. 12). In that work, a detailed heat/flow model was first validated for prediction of the melt pool shape and variation in temperature gradient around the melt pool. The heat/flow flow results were then integrated into a solidification model for determining the ac-

Fig. 1 — Two EB weld microstructures with superimposed OIM maps. A — 500 W, 95 mm/s; B — 1500 W, 25 mm/s.
tive growth directions as well as the tem-
perature gradient and solidification veloc-
ity along the dendrite growth direction as
an aid to predicting conditions that lead to
the formation of stray grains. Details of
the modeling approach and validation are
explained in that paper (Ref. 12). The gen-
eral effects of welding parameters, sub-
strate orientation, and welding process
type on the development of stray grains
over a wide range of conditions has also
recently been investigated and described
(Ref. 13). Selected results from the
heat/fluid flow and solidification model
(Ref. 12) were used to help develop a de-
tailed understanding of these effects. In
this paper, experimental results are pre-
sented that correlate the process param-
eters and process type to the SG formation
and cracking tendency. The results of this
research can be used as the basis for de-
signing processing strategies for successful
single crystal welds repairs.

Experimental Procedure

A series of autogenous welds was pre-
pared in order to study the SG formation
behavior and cracking susceptibility as a
function of welding parameters and weld-
ing process. The Ni-based superalloy
CMSX-4 (Table 1) was selected as a rep-
resentative alloy used in SX applications
for its widespread use in the industry. The
alloy composition, as measured through wet-
chemical techniques, is given in Table
1. Substrates with dimensions 155×80×6
mm (6.1×3.1×0.25 in.) were cast such
that the (001) crystal plane was parallel to
the sample surface. The substrates were
solution heat-treated with a schedule used
in industrial practice for Alloy CMSX-4
(heated to 1310°C [2390°F]) for 7 h while
under vacuum. Electron beam (EB) welds
were performed on the CMSX-4 sub-
strates at beam powers up to 1500 W and
travel speeds up to 95 mm/s using a large-
chamber Leybold-Heraeus EB welding
apparatus. The absorbed power of these
welds was taken to be equal to the trans-
mitted power by assuming an absorption
coefficient of 1.0, since the transfer effi-
ciency of the EB weld process is known to
be very high. For comparison, a smaller set
of autogenous welds was also conducted
using the gas tungsten arc welding
(GTAW) process. The particular powers
were selected such that the absorbed pow-
ners would overlap some of the EB welds
after taking into account the arc transfer
efficiency of ~0.7 for the GTAW process
(Ref. 14). (All power values cited in this
work are absorbed powers.) The torch
torch travel speed also ranged from 1 to 100
mm/s (2.4 to 240 in./min), similar to the
EB welds. All welds described in this
paper were produced in the [100] direction
on the (100) plane.

Cross sections from the welds were
prepared using standard metallographic
techniques. Orientation imaging mi-
croscopy (OIM) analysis was conducted
using an electron-backscattered diffrac-
tion (EBSD) camera on a Hitachi 4300
field-emission-gun scanning electron mi-
croscope (FEG-SEM) in order to deter-
mine the area of SG. The weld structures
were then revealed by immersing the spec-
imens for 5 s in a reagent consisting of 50
mL of HCl, 50 mL of H2O, and 2.5 g of
CuCl2. Light optical microscopy (LOM)
photomicrographs of the weld cross sec-
tions were used to measure the weld pool
dimensions and the fusion zone area. The
SG area fraction was determined by divid-

Table 1 — The Composition of the Base Metal
CMSX-4 Used in this Study. All values in wt-%.

<table>
<thead>
<tr>
<th>Element</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>Bal</td>
</tr>
<tr>
<td>C</td>
<td>0.002</td>
</tr>
<tr>
<td>Cr</td>
<td>6.36</td>
</tr>
<tr>
<td>Co</td>
<td>9.68</td>
</tr>
<tr>
<td>Mo</td>
<td>0.63</td>
</tr>
<tr>
<td>W</td>
<td>6.34</td>
</tr>
<tr>
<td>Ta</td>
<td>6.52</td>
</tr>
<tr>
<td>Ti</td>
<td>1.00</td>
</tr>
<tr>
<td>Al</td>
<td>5.62</td>
</tr>
<tr>
<td>B</td>
<td>0.0</td>
</tr>
<tr>
<td>Zr</td>
<td>0.0</td>
</tr>
<tr>
<td>Hf</td>
<td>0.10</td>
</tr>
<tr>
<td>Re</td>
<td>2.87</td>
</tr>
</tbody>
</table>

The effect of welding parameters on stray grain area fraction within the electron beam weld structures for the [100]/(100) substrate orientation.

The effect of welding process on stray grain area fraction for an equivalent absorbed power over a range of travel speeds.
W, 95 mm/s) and represents a crack-free weld with essentially no SG. By comparison, a high heat input (1500 W, 25 mm/s) EB weld is shown in Fig. 1B. This weld exhibited a high SG content of 70%. The presence of a solidification crack is illustrated by a line of black pixels and is bordered on both sides by stray grains.

While stray grain formation behavior is directly a function of local solidification parameters, these values are functions of the overall welding parameters. Figure 2 shows the overall SG area fraction as a function of beam power and travel speed for the EB welds. (SG measurements were not made at travel speeds below 20 mm/s for welds made at power levels of 1000 and 1500 W because the welds were very large and required long sampling times. In addition, simple metallographic inspection indicated that these large welds had high SG contents.) The maximum SG area fraction is reached at an intermediate travel speed of ~ 6 mm/s. Beyond this value, the SG content decreases with increasing travel speed. This variation in SG content with travel speed has been observed in other work (Ref. 4) and can be explained based on the relative increases in temperature gradient and growth rate with changes in travel speed. When the travel speed is low, initial increases in the speed will cause an increase in the growth rate with only minor changes in the temperature gradient. As a result, the G/V ratio generally decreases, and the amount of SG will therefore increase. Further increases in the travel speed will induce larger increases in the temperature gradient, and, according to Equation 2, G has a larger effect on SG formation than V. Thus, SG formation will subsequently decrease with further increases in the travel speed. The negative influence of increasing weld power on SG formation can be understood by considering its effect on the temperature gradient. An increase in the power will produce a decrease in the temperature gradient, thus promoting more SG to form in the weld.

A limited set of SG measurements was performed on the GTA weld structures. Those results are shown in Fig. 3 along with data from welds conducted using the EB processes at an equivalent absorbed power of 180 W. Data for several laser welds made at an equivalent absorbed power are also shown for comparison (Refs. 12, 13). Note that the GTA welds always exhibit more SG than the EB welds, and the laser welds are intermediate to these two cases. It is interesting to note that the trend in SG content between the three processes correlates to the differences in energy density. The energy density of the heat source influences the temperature gradient in the weld pool, where welds produced with higher energy density processes will experience higher temperature gradients. Thus, welds produced with higher energy density processes are expected to exhibit lower SG contents than welds made from lower energy density processes at equivalent levels of input power and travel speed. This accounts for the relatively high SG grain content of the GTA welds.

Figure 4 summarizes the cracking sus-
ceptibility of all the EB (Fig. 4A) and GTA (Fig. 4B) welds as a function of absorbed power and travel speed. These results clearly show that crack-free welds are promoted by low heat inputs (i.e., low power and high travel speed). This result is not surprising considering the influence of processing parameters on SG formation, and the link between SG formation and cracking susceptibility. Since SG can generally be reduced under low heat input conditions, the cracking susceptibility will also be reduced as the heat input is decreased. The reduced heat input may also be beneficial due to its effect on solidification shrinkage and size of the crack-susceptible mushy zone. The smaller welds produced under lower heat input conditions will exhibit reduced strain from solidification shrinkage along with a smaller crack-susceptible mushy zone, and these factors may also contribute to the reduced cracking susceptibility. It should also be noted that the formation of SG does not directly indicate that cracking will occur. Crack-free welds can be made when SG are present if the mechanical stress and strain for crack formation is low enough. It is also important to note that the low heat input welds are generally wide and shallow, relative to the higher heat input welds that are typically deeper and more narrow. An example of this is readily available by inspection of the two welds shown in Fig. 1. Thus, deeply penetrating welds should generally be avoided when SG and solidification cracking are important to eliminate.

Careful examination of Fig. 4 indicates there is a significant difference in the range of processing parameters between the two processes that can be used to produce crack-free welds. This is shown in Fig. 5, which compares the position of the crack/crack-free boundary for each process. Although the positions of these boundaries are only approximate and apply only to the conditions used in this investigation, the results clearly demonstrate the beneficial effect of the EB process over the GTA process. Reference to Fig. 3 indicates this can likely be attributed to differences in power density and resultant temperature gradient. The higher power density and temperature gradient of the EB process reduces the SG content and, therefore, helps reduce the incidence of cracking.

As previously mentioned, successful weld repair of single crystal turbine blades requires minimizing both the amount of SG and solidification cracks. Fortunately, a reduction of the SG content typically leads to crack-free welds, and each defect, in turn, can be minimized by reductions in the heat input. In view of this, Fig. 6 summarizes the influence of heat input on SG area fraction and cracking susceptibility for the EB welds. These results show that, for the current conditions, there is a critical heat input of ~13 J/mm. Welds made below this heat input level are consistently crack-free with very low SG contents (< 5%). Above this value, the formation of SG and associated solidification cracks are more erratic. It is important to note that effective weld repairs can still be accomplished when small amounts of SG form. Welds produced with small amounts of SG typically exhibit a very shallow layer of SG near the top of the weld at the centerline, since G/V is the lowest in that location (Ref. 15). Most practical repairs require the deposition of multiple layers. Thus, the shallow layer of SG can be removed by subsequent passes as long as the depth of melting from the next pass is greater than the depth of stray grains from the preceding pass. With this approach, the SG can be “pushed” up to the final layer, where they can be easily removed by machining. This approach has recently been applied to successfully prepare a 12-layer single crystal deposit using the laser-engineered net shaping process (Ref. 15).

Conclusions

Autogenous welds were prepared on the single crystal CMSX-4 using the EB and GTA welding processes. The stray grain (SG) area fraction and cracking susceptibility were determined and correlated to the processing parameters and process type. The following conclusions can be drawn from this work:

1) The SG content initially increases and then decreases with increasing travel speed. This effect is attributed to the complex relationship of travel speed on the temperature gradient and growth rate. Stray grain content decreases with decreasing weld power. In general, the SG content and cracking susceptibility can be reduced by welding at low heat inputs.

2) The SG content and corresponding cracking susceptibility was higher for welds prepared with the GTA process compared to the EB process. This difference is attributed to differences in power density and temperature gradient, where the EB process produces a higher temperature gradient that leads to reduced SG and less solidification cracking.

3) For the conditions evaluated in this work, EB welds produced at heat inputs below ~13 J/mm produced welds that were crack-free with very low SG contents (< 5%).

Acknowledgements

The authors would like to acknowledge the financial support of the National Science Foundation through Grant No. 0500254. The SX substrates used for welding trials were cast by Howmet, a division of Alcoa, Inc. The EB welding experiments were made possible by Thomas Lienert and Paul Burgardt of Los Alamos National Laboratories.

References

