022s.pdf

Welding Journal | January 2014

It is particularly interesting to note that the fine spherical Mg-Al-O-based inclusions were formed in the presence of 300 ppm of Mg in the weld metal. There has been limited discussion in the literature on the application of Mg as an alloying element in steels; however, it has been noted to produce nitride and oxide precipitates, which may be useful in refining the grain structure in the heat-affected zone (Ref. 53). The use of MgO in welding flux is common, due to the strong deoxidizing role of Mg in the weld metal (Ref. 54), although the concentration of Mg in weld metal is seldom ever reported due to its low solubility in steel. To the authors’ knowledge, this work represents the first time that Mg has been observed to play a significant role in the structure of fine oxides in a weld metal, as indicated by the AES observations in Fig. 6 and the thermodynamic modeling in Fig. 4. Since the chemistry and microstructural features contributing to the properties of the weld metal were heavily influenced by the flux used here (Ref. 27), it is worth examining how this can be optimized further in consumables for other processes. Conclusions Fine Mg-bearing inclusions with a core/shell structure have been observed in a carbon steel weld metal. Flux cored arc welding was used to produce a weld metal that contained primarily bainitic ferrite with a fine packet size in the as-deposited metal and mainly nonaligned ferrite in the reheated zones. Spherical inclusions with an average diameter of 311 nm were observed with a shelled structure that was mainly rich in aluminum, magnesium, and oxygen in the core, vs. magnesium and oxygen in the outer shell, which was suggested to be halite based on thermodynamic calculations for the weld metal chemistry. The combination of a fine inclusion size, nickel in solution, a low content of interstitials (such as O and N), along with a fine ferrite packet size, were suggested to provide an excellent combination of toughness and strength. Instrumented impact testing showed the slight increase in grain refinement in reheated zones around the root of the weld improved impact properties, although fracture initiation energies were comparable to the top of the weld. Acknowledgments Financial support was provided from Hobart Brothers and Natural Sciences and Engineering Research Council of Canada (NSERC). Discussions with Mario Amata of Hobart Brothers, and Graham Thewlis are also greatly appreciated. References 1. Mori, N., Homma, H., Ohkita, S., and Wakabayashi, M. 1981. J. Jpn. Weld. Soc. 50: 175–181. 2. Abson, D. J., and Pargeter, R. J. 1986. Int. Met. Rev. 31(4): 141–194. 3. Ferrante, M., and Farrah, R. A. 1982. Journal of Materials Science 17: 3293–3298. 4. Koseki, T., and Thewlis, G. 2005. Mater. Sci. Tech.-Lond. 21(8): 867–879. 5. Ohkita, S., and Horii, Y. 1995. Isij. Int. 35(10): 1170–1182. 6. Gourgues, A. F., Flower, H. M., and Lindley, T. C. 2000. Mater. Sci. Tech.-Lond. 16(1): 26–40. 7. Gregg, J. M., and Bhadeshia, H. K. D. H. 1994. Acta Metall Mater 42(10): 3321–30. 8. Kou, S. 2003. Welding Metallurgy. 2nd ed. Wiley-Interscience, Hoboken, N.J. 9. Koseki, T., Ohkita, S., and Yurioka, N. 1997. Sci. Technol. Weld. Joi. 2(2): 65–9. 10. Ashby, M. F., and Easterling, K. E. 1982. Acta. Metallurgica. 30(11): 1969–78. 11. Fleck, N. A., Grong, O., Edwards, G. R., and Matlock, D. K. 1986. Welding Journal 65(5): 113-s to 121-s. 12. Edwards, G. R., and Liu, S. 1990. Proceedings of the first US-Japan Symposium on Advanced Welding Metallurgy. AWA/JWS/JWES: San Francisco, Calif., and Yokohama, Japan. pp. 213–292. 13. Bhadeshia, H. K. D. H., and Christian, J. W. 1990. Metall. Trans. A 21(4): 767–797. 14. Widgery, D. J., and Knott, J. F. 1978. Met. Sci. 12(1): 8–11. 15. Tweed, J. H., and Knott, J. F. 1983. Met. Sci. 17(2): 45–54. 16. S. Terashima, S., and Bhadeshia, H. K. D. H. 2006. Sci. Technol. Weld. Joi. 11(5): 509–516. 17. Babu, S. S. 2004. Current Opinion in Solid State and Materials Science 8: 267–278. 18. Shanmugam, S., Ramisetti, N. K., Misra, R. D. K., Hartmann, J., and Jansto, S. G. 2008. Mat. Sci. Eng. a-Struct. 478(1-2): 26–37. 19. de Rissone, N. M. R., Bott, I. D., de Vedia, L. A., and Surian, E. S. 2003. Sci. Technol. Weld. Joi. 8(2): 113–122. 20. Steel, A. C. 1972. Weld. Res. Intl. (3): 37–76. 21. Ahlblom, B. 1984. IIW Doc. IXJ-81-84. 22. Ito, Y., and Nakashin, M. 1976. Sumitomo Search 15(42–62): 42. 23. Ito, Y., Nakashin, M., and Komizo, Y. 1982. Met. Contr. 14(9): 472–478. 24. Terashima, H., and Tsuboi, J. 1982. Met. Constr. 14(12): 648–654. 25. Judson, P., and McKeown, D. 1983. Offshore Welded Structures. 1983. The Welding Institute: Abington, UK. Paper 3. 26. Lancaster, J. F. 1993. Metallurgy of Welding. 5th ed., Chapman & Hall, London, New York. 27. Amata, M., and Bundy, J. C. 2008. Aluminum Deoxidizing Welding Wire, Inlt. Patent No. US2008/0272100 A1, United States, Illinois Tool Works, Inc. 28. Quintana, M. A., McLane, J., Babu, S. S., and David, S. A. 2001. Welding Journal 80(4): 98-s to 105-s. 29. Thewlis, G. 2004. Mater. Sci. Tech.-Lond. 20(2): 143–160. 30. Zhang, H., Zhang, L., Cheng, X. L., and Bai, B. Z. 2010. Acta. Mater. 58(18): 6173–6180. 31. Bergman, O., and Nyborg, L. 2010. Powder Metallurgy Progress 10(1): 1–19. 32. Song, M. S., Huang, B., Zhang, M. X., and Li, J. G. 2008. Cryst. Growth 310(18): 4290–4294. 33. Moitra, A., Sreenivasan, P. R., Parameswaran, P., and Mannan, S. L. 2002. Mater. Sci. Tech.-Lond. 18: 1195–2000. 34. Sreenivasan, P. R., and Mannan, S. L. 2000. Int. J. Fracture 101(3): 215–228. 35. Ghoneim, M. M., and Hammad, F. H. 1992. J. Nucl. Mater. 186(2): 196–202. 36. Takada, A., Terasaki, H., and Komizo, Y. 2013. Sci. Technol. Weld. Joi. 18(2): 91–97. 37. Evans, G. M. 1991. Oerlikon Schweissmitt 49(125): 22–33. 38. Lalam, S. H., Bhadeshia, H. K. D. H., and MacKay, D. J. C. 2000. Sci. Technol. Weld. Joi. 5(3): 149–160. 39. Bose, W. W., Carvalho, A .L. M., and Bowen, R. 2007. Mat. Sci. Eng. a-Struct. 452: 401–410. 40. Narayanan, B. K., Kovarik, L., Sarosi, P. M., Quintana, M. A., and Mills, M. J. 2010. Acta. Mater. 58(3): 781–791. 41. Nippes, E. F., and Balaguer, J. P. 1986. Welding Journal 65(9): 237-s to 243-s. 42. Cheary, R. W., and Ying, M. S. 2000. Journal of Materials Science 35(5): 1105–1113. 43. Shiue, R. K., Lan, K. C., and Chen, C. 2000. Mat. Sci. Eng. a-Struct. 287(1): 10–6. 44. Morigaki, O., Tanigaki, T., Kuwabara, M., Fubayashi, K., and Otawa, M. 1975. IIW, 1975, Doc. II 746-775. 45. Abson, D. J., and Dolby, R. E. 1980. Weld. Inst. Res. Bull. 21(4): 100–103. 46. Abson, D. J., and Dolby, R. E. 1980. IIW Doc. IXJ 29-80. 47. United States Steel Corp. and McGannon, H. E. 1971. The Making, Shaping and Treating of Steel. 9th ed. United States Steel, Pittsburgh, Pa. 48. Leslie, W. C. 1972. Metall. Trans. 3(1): 5–26. 49. Lambert, A., Drillet, J., Gourgues, A. F., Sturel, T., and Pineau, A. 2000. Sci. Technol. Weld. Joi. 5(3): 168–173. 50. Edmonds, D. V., and Cochrane, R. C. 1990. Metall. Trans. A 21(6): 1527–1540. 51. Hahn, G. T. 1984. Metall Trans A 15(6): 947–959. 52. Ito, Y., and Nakashin, M. 1979. Sumitomo Search 21: 52–67. 53. Ohkita, S., and Oikawa, H. 2007. Nippon Steel Technical Report 95(2): 1–10. 54. Surian, E. S., and de Rissone, N. M. R. 1999. Sci. Technol. Weld. Joi. 4(3): 133–142. JANUARY 2014, VOL. 93 22-s WELDING RESEARCH


Welding Journal | January 2014
To see the actual publication please follow the link above