144s

Welding Journal | April 2015

WELDING RESEARCH ferrite and an increase in Widmanstätten and acicular ferrite. 4. Utilizing the combined models, a process map has been constructed that illustrates the effects of welding speed, separation distance, and laser power on cooling rate and microconstituent volume fractions. Identical cooling rates and microconstituent volume fractions can be obtained with various combinations of process parameters. In general, welding speed and laser power have a more significant effect on cooling rates than separation distance; however, at high welding speeds, the separation distance can be the deciding factor for martensite formation. Acknowledgments The authors would like to thank Mr. Jay Tressler for performing the hybrid welding experiments, Mr. Ed Good and Dr. Jay Keist for assisting with the metallography, and Prof. Lars-Erik Svensson for assisting with the microstructure identification and quantification. This research was performed using funding received from the DOE Office of Nuclear Energy’s Nuclear Energy University Programs under Grant Number 120327. 1. Steen, W. M. 1980. Arc augmented laser processing of materials. Journal of Applied Physics 51(11): 5636–5640. 2. Tusek, J., and Suban, M. 1999. Hybrid welding with arc and laser beam. Science and Technology of Welding and Joining 4(5): 308–311. 3. Page, C. J., Devermann, T., Biffin, J., and Blundell, N. 2002. Plasma augmented laser welding and its applications. Science and Technology of Welding and Joining 7(1): 1–10. 4. Chen, Y. B., Lei, Z. L., Li, L. Q., and Wu, L. 2006. Experimental study on welding characteristics of CO2 laser TIG hybrid welding process. Science and Technology of Welding and Joining 11(4): 403–411. 5. Zhou, J., and Tsai, H. L. 2008. Modeling of transport phenomena in hybrid laser-MIG keyhole welding. International Journal of Heat and Mass Transfer 51(17-18): 4353–4366. 6. Cho, J. H., and Na, S. J. 2009. Three-dimensional analysis of molten pool in GMA-laser hybrid welding. Welding Journal 88(2): 35-s to 43-s. 7. Vollertsen, F., Grunenwald, S., Rethmeier, M., Gumenyuk, A., Reisgen, U., and Olschook, S. 2010. Welding thick steel plates with fibre lasers and GMAW. Welding in the World 54(3–4): R62–R70. 8. Le Guen, E., Fabbro, R., Carin, M., Coste, F., and Le Masson, P. 2011. Analysis of hybrid Nd:YAG laser-MAG arc welding processes. Optics and Laser Technology 43(7): 1155–1166. 9. Cao, X., Wanjara, P., Huang, J., Munro, C., and Nolting, A. 2011. Hybrid fiber laser-arc welding 144-s WELDING JOURNAL / APRIL 2015, VOL. 94 of thick section high strength low alloy steel. Materials and Design 32(6): 3399–3413. 10. Roepke, C., Liu, S., Kelly, S., and Martukanitz, R. 2010. Hybrid laser arc welding process evaluation on DH36 and EH36 steel. Welding Journal 89(7): 140-s to 150-s. 11. Bagger, C., and Olsen, F. O. 2005. Review of laser hybrid welding. Journal of Laser Applications 17(1): 2–14. 12. Gao, M., Zeng, X. Y., and Hu, Q. W. 2006. Effects of welding parameter on melting energy of CO2 laser-GMA hybrid welding. Science and Technology of Welding and Joining 11(5): 517–522. 13. Rao, Z. H., Liao, S. M., and Tsai, H. L. 2011. Modeling of hybrid laser-GMA welding: Review and challenges. Science and Technology of Welding and Joining 16(4): 300–305. 14. Callister, W. D., and Rethwisch, D. G. 2009. Materials Science and Engineering. Wiley, U.S.A. 15. Roepke, C., and Liu, S. 2009. Hybrid laser arc welding of HY-80 steel. Welding Journal 88(8): 159-s to 167-s. 16. Gao, M., Zeng, X. Y., Hu, Q. W., and Yan, J. 2008. Weld microstructure and shape of laser-arc hybrid welding. Science and Technology of Welding and Joining 13(2): 106–113. 17. Moore, P. L., Howse, D. S., and Wallach, E.R. 2004. Microstructures and properties of laser-arc hybrid welds and autogenous laser welds in pipeline steels. Science and Technology of Welding and Joining 9(4): 314–322. 18. Swanson, P. T., Page, C. J., Read, E., and Wu, H. Z. 2007. Plasma augmented laser welding of 6 mm steel plate. Science and Technology of Welding and Joining 12(2): 153–160. 19. Chen, Y. B., Feng, J. C., Li, L.Q., Chang, S., and Ma, G. L. 2013. Microstructure and mechanical properties of a thick-section high-strength steel welded joint by novel double-sided hybrid fibre laser-arc welding. Materials Science and Engineering A – Structural Materials Properties Microstructure and Processing 582: 284–293. 20. Gao, M., Zeng, X. Y., Yan, J., and Hu, Q. W. 2008. Microstructure characteristics of laser-MIG hybrid welded mild steel. Applied Surface Science 254(18): 5715–5721. 21. McPherson, N. A., Suarez-Fernandez, N., Moon, D. W., Tan, C. P. H., Lee, C. K., and Baker, T. N. 2005. Laser and laser-assisted arc welding process for DH 36 microalloyed steel ship plate. Science and Technology of Welding and Joining 10(4): 460–467. 22. Bhadeshia, H. K. D. H. 1982. Thermodynamic analysis of isothermal transformation diagrams. Metal Science 16(3): 159–165. 23. Bhadeshia, H. K. D. H., Svensson, L. E., and Gretoft, B. 1985. A model for the development of microstructure in low-alloy steel (Fe-Mn- Si-C) weld deposits. Acta Metallurgica 33(7): 1271–1283. 24. Bhadeshia, H. K. D. H., and Svensson, L. E. 1993. Modeling the evolution of microstructure in steel weld metal. Mathematical Modeling of Weld Phenomena. H. Cerjak and K. E. Eastering, eds. Institute of Materials, London, pp. 109–180. 25. Mundra, K., and DebRoy, T. 1996. Numerical prediction of fluid flow and heat transfer in welding with a moving heat source. Numerical heat transfer, Part A 29: 115–129. 26. Mundra, K., and DebRoy, T. 1993. Calculation of weld metal composition change in highpower conduction mode carbon-dioxide laser welded stainless steels. Metallurgical Transactions B – Process Metallurgy 24(1): 145–155. 27. Ribic, B., Rai, R., and DebRoy, T. 2008. Numerical simulation of heat transfer and fluid flow in GTA/Laser hybrid welding. Science and Technology of Welding and Joining 13(8): 683–693. 28. International Institute of Welding (IIW), Guide to the light microscope examination of ferritic steel weld metals. 1991. Welding in the World 29: 160–176. 29. Rai, R., Kelly, S. M., Martukanitz, R. P., and DebRoy, T. 2008. A convective heat transfer model for partial and full penetration keyhole mode laser welding of a structural steel. Metallurgical and Materials Transactions A 39A: 98–112. 30. Kaplan, A. 1994. A model of deep penetration laser welding based on calculation of the keyhole profile. Journal of Physics D: Applied Physics 27: 1805–1814. 31. Zhao, H., and DebRoy, T. 2003. Macroporosity free aluminum alloy weldments through numerical simulation of keyhole mode laser welding. Journal of Applied Physics 93: 10089–10097. 32. Wilcox, D. C. 1993. Turbulence Modeling for CFD (California: DCW Industries). 33. Launder, B. E., and Spalding, D. B. 1972. Lectures in Mathematical Models of Turbulence. London, UK: Academic Press. 34. Zhang, W., Kim, C. H., and DebRoy, T. 2004. Heat and fluid flow in complex joints during gas metal arc welding — Part II: Application to fillet welding of mild steel. Journal of Applied Physics 95(9): 5220–5229. 35. Essers, W. G., and Walter, R. 1981. Heat transfer and penetration mechanisms with GMA and plasma-GMA welding. Welding Journal 60(2): 37-s to 42-s. 36. Lancaster, J. F. 1984. The Physics of Welding. New York, N.Y.: Pergamon Press. 37. Ribic, B., Burgardt, P., and DebRoy, T. 2011. Optical emission spectroscopy of metal vapor dominated laser-arc hybrid welding plasma. Journal of Applied Physics 109(8): 083301. 38. Kumar, S., and Bhaduri, S. C. 1994. Threedimensional finite element modeling of gas metalarc welding. Metallurgical and Materials Transactions B 25B: 435–441. 39. Yang, Z., and DebRoy, T. 1999. Modeling macro- and microstructures of gas-metal-arc welded HSLA-100 steel. Metallurgical and Materials Transactions B — Process Metallurgy and Materials Processing Science 30(3): 483–493. 40. Kou, S. 2012. Fluid flow and solidification in welding: Three decades of fundamental research at the university of Wisconsin. Welding Journal 91(11): 287-s to 302-s. 41. Takahashi, M., and Bhadeshia, H. K. D. H. 1991. A model for the microstructure of some advanced bainitic steels. Materials Transactions 32(8): 689–696. 42. Masubuchi, K. 1980. Analysis of Welded Structures. New York, N.Y.: Pergamon Press. 43. Ribic, B., Palmer, T. A., and DebRoy, T. 2009. Problems and issues in laser-arc hybrid welding. International Materials Reviews 54(4): 223–244. 44. Sevim, I. 2006. Effect of hardness to fracture toughness for spot welded steel sheets. Materials and Design 27(1): 21–30. 45. Reutzel, E. W., Sullivan, M. J., and Mikesic, D. A. 2006. Joining pipe with the hybrid laser- GMAW process: Weld test results and cost analysis. Welding Journal 85(6): 66–71. References


Welding Journal | April 2015
To see the actual publication please follow the link above